【題目】某汽車的使用年數(shù)x與所支出的維修費(fèi)用y的統(tǒng)計(jì)數(shù)據(jù)如表:

使用年數(shù)x(單位:年)

1

2

3

4

5

維修總費(fèi)用y(單位:萬元)

0.5

1.2

2.2

3.3

4.5

根據(jù)上表可得y關(guān)于x的線性回歸方程 = x﹣0.69,若該汽車維修總費(fèi)用超過10萬元就不再維修,直接報(bào)廢,據(jù)此模型預(yù)測該汽車最多可使用( )
A.8年
B.9年
C.10年
D.11年

【答案】D
【解析】解:計(jì)算 = ×(1+2+3+4+5)=3,

= ×(0.5+1.2+2.2+3.3+4.5)=2.34;

代入回歸方程 = x﹣0.69得

2.34= ×3﹣0.69,

解得 =1.01;

∴回歸方程為 =1.01x﹣0.69,

=1.01x﹣0.69≥10,

解得x≥10.6≈11,

據(jù)此模型預(yù)測該汽車最多可使用11年.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是邊長為2的等邊三角形,E是BC的中點(diǎn).
(1)求證:AE∥平面PCD;
(2)記平面PAB與平面PCD的交線為l,求二面角C﹣l﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從雙曲線 =1(a>0,b>0)的左焦點(diǎn)F引圓x2+y2=a2的切線,切點(diǎn)為T,延長FT交雙曲線右支于P點(diǎn),若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|﹣|MT|等于(
A.c﹣a
B.b﹣a
C.a﹣b
D.c﹣b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)解不等式f(x)≤5;
(2)若f(x)+m≠0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(x,y)是曲線C上任意一點(diǎn),點(diǎn)(x,2y)在圓x2+y2=8上,定點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l與曲線C交于A、B兩個不同點(diǎn).
(1)求曲線C的方程;
(2)求證直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為 的橢圓C: + =1(a>b>0)過點(diǎn)P(﹣1, ).
(1)求橢圓C的方程;
(2)直線AB:y=k(x+1)交橢圓C于A、B兩點(diǎn),交直線l:x=m于點(diǎn)M,設(shè)直線PA、PB、PM的斜率依次為k1、k2、k3 , 問是否存在實(shí)數(shù)t,使得k1+k2=tk3?若存在,求出實(shí)數(shù)t的值以及直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 , 滿足| |=3,| |=2| |,若| |≥3恒成立,則實(shí)數(shù)λ的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為R上的可導(dǎo)函數(shù),且對x∈R,均有f(x)>f′(x),則有(
A.e2016f(﹣2016)<f(0),f(2016)<e2016f(0)
B.e2016f(﹣2016)>f(0),f(2016)>e2016f(0)
C.e2016f(﹣2016)<f(0),f(2016)>e2016f(0)
D.e2016f(﹣2016)>f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F(xiàn) 是棱 PA上的一個動點(diǎn),E為PD的中點(diǎn).
(Ⅰ)若 AF=1,求證:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 與平面 PCD所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案