【題目】已知橢圓,其離心率為,以原點(diǎn)為圓心,橢圓的短軸長(zhǎng)為直徑的圓被直線截得的弦長(zhǎng)等于.

(1)求橢圓的方程;

(2)設(shè)為橢圓的左頂點(diǎn),過(guò)點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為,與軸相交于點(diǎn),過(guò)原點(diǎn)與平行的直線與橢圓相交于兩點(diǎn),問(wèn)是否存在常數(shù),使恒成立?若存在,求出;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) (2)見(jiàn)解析

【解析】

(1)由橢圓的短軸長(zhǎng)為直徑的圓被直線截得的弦長(zhǎng)等于求得,再由離心率為求得,問(wèn)題得解。

(2)設(shè)直線的方程為,分別表示出點(diǎn)M,N的坐標(biāo),從而表示出,聯(lián)立直線與橢圓方程,即可表示出,問(wèn)題得解。

(1)由題意設(shè)圓的半徑等于,

圓心到直線的距離為,

,

∵離心率

,

∴題意的方程為.

(2)由(1)知點(diǎn)坐標(biāo)為,顯然直線的斜率存在,設(shè)直線的方程為,則,由,

,

設(shè),

則由題意可知,

,

直線方程為,由,

,

設(shè),

,

,

∴存在常數(shù),使恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知幾何體,其中四邊形為直角梯形,四邊形為矩形, ,且, .

(1)試判斷線段上是否存在一點(diǎn),使得平面,請(qǐng)說(shuō)明理由;

(2)若,求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓方程為,射線與橢圓的交點(diǎn)為M,過(guò)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于AB兩點(diǎn)(異于M).

(1)求證:直線AB的斜率為定值;

(2)求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 中, 平面 ,底面是等腰梯形,且 ,其中 .

1)證明:平面 平面 .

2)求點(diǎn) 到平面 的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解高一學(xué)生暑假里在家讀書(shū)情況,特隨機(jī)調(diào)查了50名男生和50名女生平均每天的閱讀時(shí)間(單位:分鐘),統(tǒng)計(jì)如下表:

(1)根據(jù)統(tǒng)計(jì)表判斷男生和女生誰(shuí)的平均讀書(shū)時(shí)間更長(zhǎng)?并說(shuō)明理由;

(2)求100名學(xué)生每天讀書(shū)時(shí)間的平均數(shù),并將每天平均時(shí)間超過(guò)和不超過(guò)平均數(shù)的人數(shù)填入下列的列聯(lián)表:

(3)根據(jù)(2)中列聯(lián)表,能否有99%的把握認(rèn)為“平均閱讀時(shí)間超過(guò)或不超過(guò)平均數(shù)是否與性別有關(guān)?”

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲廠以千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每小時(shí)可獲得利潤(rùn)是.

1)要使生產(chǎn)該產(chǎn)品小時(shí)獲得的利潤(rùn)不低于元,求的取值范圍;

2)要使生產(chǎn)千克該產(chǎn)品獲得的利潤(rùn)最大,問(wèn):甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某運(yùn)動(dòng)員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機(jī)數(shù):

據(jù)此估計(jì),該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)橢圓 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn), , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .

(Ⅰ)求橢圓的方程;

(Ⅱ)證明:直線過(guò)定點(diǎn).

【答案】(Ⅰ).(Ⅱ)直線過(guò)定點(diǎn).

【解析】試題分析】(I)根據(jù)圓的半徑和已知 ,,由此求得橢圓方程.(II)設(shè)出直線的方程,聯(lián)立直線方程與橢圓方程,寫(xiě)出韋達(dá)定理,寫(xiě)出的斜率并相加,由此求得直線過(guò)定點(diǎn).

試題解析】

(Ⅰ)圓軸交點(diǎn)即為橢圓的焦點(diǎn),圓軸交點(diǎn)即為橢圓的上下兩頂點(diǎn),所以 .從而,

因此橢圓的方程為: .

(Ⅱ)設(shè)直線的方程為.

,消去.

設(shè), ,則, .

直線的斜率

直線的斜率 .

.

的平分線在軸上,得.又因?yàn)?/span>,所以,

所以.

因此,直線過(guò)定點(diǎn).

[點(diǎn)睛]本小題主要考查橢圓方程的求解,考查圓與橢圓的位置關(guān)系,考查直線與圓錐曲線位置關(guān)系. 涉及直線與橢圓的基本題型有:(1)位置關(guān)系的判斷.(2)弦長(zhǎng)、弦中點(diǎn)問(wèn)題.(3)軌跡問(wèn)題.(4)定值、最值及參數(shù)范圍問(wèn)題.(5)存在性問(wèn)題.常用思想方法和技巧有:(1)設(shè)而不求.(2)坐標(biāo)法.(3)根與系數(shù)關(guān)系.

型】解答
結(jié)束】
21

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)對(duì)任意的都有,且

1)求函數(shù)的解析式;

2)設(shè)函數(shù)

①若存在實(shí)數(shù),,使得在區(qū)間上為單調(diào)函數(shù),且取值范圍也為,求的取值范圍;

②若函數(shù)的零點(diǎn)都是函數(shù)的零點(diǎn),求的所有零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案