10.下列命題中,正確的是( 。
A.有兩個(gè)面互相平行,其余各面都是平行四邊形的幾何體叫棱柱
B.棱柱中互相平行的兩個(gè)面叫做棱柱的底面
C.棱柱的側(cè)面是平行四邊形,而底面不是平行四邊形
D.棱柱的側(cè)棱都相等,側(cè)面是平行四邊形

分析 由空間幾何體的結(jié)構(gòu)特征舉出反例,可以判斷A、B;運(yùn)用棱柱的定義,性質(zhì)判斷C,D即可.

解答 解:對于A,有兩個(gè)面平行其余各面都是平行四邊形的幾何體叫棱柱錯(cuò)誤,即A錯(cuò)誤,反例如圖:

對于B,正六棱柱有四對平行的面,但只有一對正六邊形的面可以為底面,故B錯(cuò)誤;
對于C,棱柱的側(cè)面是平行四邊形,而底面可以是平行四邊形,故C錯(cuò)誤;
對于D,棱柱的側(cè)面都是平行四邊形,正確,
故選:D.

點(diǎn)評 本題考查棱柱的定義,考查學(xué)生對概念的理解,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對于定義在R上的可導(dǎo)函數(shù)f(x),命題p:f(x)在x=x0處導(dǎo)數(shù)值為0,命題q:函數(shù)f(x)在x=x0處取得極值,則命題p是命題q成立的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+1,x<0}\\{f(x-1),x≥0}\end{array}\right.$,則y=f(x)-x的零點(diǎn)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{k}{2}{x^2}+\frac{x+1}{e^x}$-1(k為常數(shù),k∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)k=$\frac{1}{8}$時(shí),若函數(shù)f(x)在(-∞,en](n∈Z,e是自然對數(shù)的底數(shù))上有兩個(gè)零點(diǎn),求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)y=Asin(ωx+φ)+m(A>0,ω>0)的最大值為4,最小值為0,最小正周期為$\frac{π}{2}$,直線$x=\frac{π}{3}$是其圖象的一條對稱軸,則符合條件的函數(shù)解析式是( 。
A.$y=4sin(4x+\frac{π}{6})$B.$y=2sin(2x+\frac{π}{3})+2$C.$y=2sin(4x+\frac{π}{3})+2$D.$y=2sin(4x+\frac{π}{6})+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知⊙O1:(x-1)2+y2=4,⊙O2:x2+(y-$\sqrt{3}$)2=9.求兩圓的公共弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-3|+|x+m|(x∈R).
(1)當(dāng)m=1時(shí),求不等式f(x)≥6的解集;
(2)若不等式f(x)≤5的解集不是空集,求參數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知$f(x)=\frac{x}{1+x}$,x≥0,若f1(x)=f(x),fn(x)=f(fn-1(x)),n∈N+,則f2014(x)的表達(dá)式為$\frac{x}{1+2014x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=cos2x+sinx,則f(x)的最大值與最小值的和為( 。
A.0B.$\frac{1}{4}$C.$\frac{9}{4}$D.$\frac{{2\sqrt{3}+6}}{4}$

查看答案和解析>>

同步練習(xí)冊答案