A. | 10 | B. | 15 | C. | -6 | D. | 25 |
分析 an=n(cos2$\frac{nπ}{4}$-sin2$\frac{nπ}{4}$)=$ncos\frac{nπ}{2}$,對n分類討論:n=2k-1(k∈N*)時,a2k-1=0;n=4k(k∈N*)時,a4k=n;n=4k-2(k∈N*)時,a4k=-n.即可得出.
解答 解:an=n(cos2$\frac{nπ}{4}$-sin2$\frac{nπ}{4}$)=$ncos\frac{nπ}{2}$,
∴n=2k-1(k∈N*)時,a2k-1=0;n=4k(k∈N*)時,a4k=n;n=4k-2(k∈N*)時,a4k=-n.
∴S10=0-2-6-10+4+8=-6.
故選:C.
點評 本題考查了數(shù)列遞推關系、分組求和、分類討論方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “若a>1,則a2>1”的否命題是“若a>1,則a2≤1” | |
B. | “x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充要條件 | |
C. | “若tanα≠$\sqrt{3}$,則$α≠\frac{π}{3}$”是真命題 | |
D. | ?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com