5.設(shè)min{p,q}表示p,q兩者中的較小者,若函數(shù)f(x)=min{3-x,log2x},則f(x)的最大值為2,滿足$f(x)<\frac{1}{2}$的集合為{x|0<x<$\sqrt{2}$或x>$\frac{5}{2}$}.

分析 利用一次函數(shù)、對數(shù)函數(shù)的圖象畫出函數(shù)f(x)=min{3-x,log2x}的圖象,即可得出

解答 解:令3-x=log2x,解得x=2.如圖所示,
由圖象得:f(x)的最大值是2;
①當0<x<2時,log2x<3-x.由log2x<$\frac{1}{2}$,解得0<x<$\sqrt{2}$,
②當x>2時,3-x<log2x.由3-x<$\frac{1}{2}$,解得x>$\frac{5}{2}$.
∴f(x)<$\frac{1}{2}$的解集是{x|0<x<$\sqrt{2}$或x>$\frac{5}{2}$}.
故答案為2,{x|0<x<$\sqrt{2}$或x>$\frac{5}{2}$}.

點評 本題考查了一次函數(shù)、對數(shù)函數(shù)的圖象、新定義、不等式的解集,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知圓O:x2+y2=2,直線l:y=kx-2.
(1)若直線l與圓O交于不同的兩點A、B,當∠AOB為銳角時,求k的取值范圍.
(2)若$k=\frac{1}{2}$,P是直線l上的動點,過P作圓O的兩條切線PC、PD,切點為C、D,探究:直線CD是否過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,$QA=AB=\frac{1}{2}PD$.
(1)證明:面PQC⊥面DQC;
(2)求面PAB與面DQC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知等比數(shù)列{an}的前n項為和Sn,且a3-3a2=0,S2=12,數(shù)列{bn}中,b1=1,bn+1-bn=2.
(1)求數(shù)列{an},{bn}的通項an和bn
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前N項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知集合A={x|2≤x≤8},B={x|1<x<6}且U=R,求集合A∪B,(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在同一坐標系中,y=2x與y=log2x的圖象與一次函數(shù)y=-x+6的圖象交于兩點,則這兩個交點的橫坐標之和為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為${60°},|{\overrightarrow a}|=2,|{\overrightarrow b}|=6$,則$2\overrightarrow a-\overrightarrow b$在$\overrightarrow a$方向上的投影為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在等差數(shù)列{an}中a3+a11=40,則a4-a5+a6+a7+a8-a9+a10的值(  )
A.84B.72C.60D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若tanα-$\frac{1}{tanα}=\frac{3}{2},α∈({\frac{π}{4},\frac{π}{2}})$,則cos2α的值為( 。
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

同步練習冊答案