已知函數(shù)f(x)的定義域為R,對于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且當x>0時,f(x)<0,若f(-1)=2.
(1)求f(0),f(3)的值;
(2)求證:f(x)是R上的減函數(shù);
(3)求不等式f(1-2x)+f(x)+6>0的解集.
考點:抽象函數(shù)及其應用
專題:函數(shù)的性質(zhì)及應用
分析:(1)利用賦值法即可求f(0)與f(3);
(2)根據(jù)函數(shù)單調(diào)性的定義即可判斷f(x)的單調(diào)性;
(3)將不等式f(1-2x)+f(x)+6>0進行等價轉(zhuǎn)化,結(jié)合函數(shù)的奇偶性和單調(diào)性的性質(zhì)即可得到結(jié)論..
解答: 解:(1))∵f(x)的定義域為R,令x=y=0,則f(0+0)=f(0)+f(0)=2f(0),
∴f(0)=0.
令x=y=-1時,f(-2)=f(-1)+f(-1)=2f(-1)=2×2=4,
∴f(-3)=f(-1-2)=f(-1)+f(-2)=2+4=6;
∵f(0)=0,∴令y=-x,得f(x-x)=f(x)+f(-x)=f(0)=0,
即f(-x)=-f(x),則f(x)是奇函數(shù),
∴f(3)=-f(-3)=-6
(2)設x1<x2,則設x2-x1>0,此時f(x2-x1)<0,
即f(x2-x1)=f(x2)+f(-x1)<0,
即f(x2)-f(x1)<0,則f(x2)<f(x1),
即f(x)的單調(diào)遞減;
(3)不等式不等式f(1-2x)+f(x)+6>0等價為f(1-3x)+f(x)>f(3),
即f(1-2x+x)=f(1-x)>f(3),
∵函數(shù)f(x)的單調(diào)遞減,
∴1-x<3,
解得x≥-2,
即不等式的解集為(-2,+∞),
點評:本題主要考查抽象函數(shù)的應用,利用賦值法結(jié)合函數(shù)單調(diào)性和奇偶性的定義是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若圓x2+y2-2a2x+2ay+4a-1=0關(guān)于直線x+y=0對稱,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)減函數(shù),且f(2)=0.
(1)求f(-2)的值;
(2)若f(log2x)<f(2),求x的取值范圍;
(3)設函數(shù)g(x)=
4-a•2x
的定義域為D,是否存在實數(shù)a,使得f[g(x)]>0對任意的x∈D恒成立?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是一個數(shù)集,且至少含有兩個數(shù),若對任意a,b∈P,都有a+b、a-b,ab、
a
b
∈P (除數(shù)b≠0),則稱P是一個數(shù)域.例如有理數(shù)集Q是數(shù)域;數(shù)集F={a+b
2
|a,b∈Q}也是數(shù)域.有下列命題:
①數(shù)域必含有0,1兩個數(shù);
②整數(shù)集是數(shù)域;
③若有理數(shù)集Q⊆M,則數(shù)集M必為數(shù)域;
④數(shù)域必為無限集;
⑤存在無窮多個數(shù)域.
其中正確的命題的序號是
 
.(把你認為正確的命題的序號填填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|y=(2x-16)
1
2
},集合B={x|y=
2x-1
2x+1
},集合C={x|a-1<x<2a+1}.
(1)求A,(∁RA)∩B;
(2)若A∩C≠C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,若對于任意的n≥2,都有an•an-1=q,(q是非零常數(shù))成立,則稱在數(shù)列{an}是等積數(shù)列,那么下列描述正確的是(  )
A、a2006=a2
B、a2006=a2007
C、a2006•a2007>0
D、a2006=a2003

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
y≤1
y≥|x-1|
,則
x+2y+3
x+1
的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

借助計算器或計算機,用二分法求方程(x+1)(x-2)(x-3)=1在區(qū)間(-1,0)內(nèi)的整數(shù)解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ax3+2(a≠0)在[-6,6]上滿足f(-6)>1,f(6)<1,試判斷方程f(x)=1在[-6,6]內(nèi)實數(shù)根的個數(shù).

查看答案和解析>>

同步練習冊答案