1.下列有關(guān)命題的敘述,錯(cuò)誤的個(gè)數(shù)為( 。
①若p∨q為真命題,則p∧q為真命題.
②“x>5”是“x2-4x-5>0”的充分不必要條件.
③命題P:?x∈R,使得x2+x-1<0,則¬p:?x∈R,使得x2+x-1≥0.
④命題“若x2-3x+2=0,則x=1”的否命題為假命題.
A.1B.2C.3D.4

分析 ①若p,q只要有一個(gè)為為真,則p∨q為真命題;
②“x<-1”時(shí),“x2-4x-5>0”也成立;
③含有量詞的命題的否定,先換量詞,再否定結(jié)論;
④命題“若x2-3x+2=0,則x=1”的否命題是:若“若x2-3x+2≠0,則x≠1”是真命題.

解答 解對(duì)于:①若p,q只要有一個(gè)為為真,則p∨q為真命題,故①錯(cuò);
對(duì)于②“x<-1”時(shí),“x2-4x-5>0”也成立,故②正確;
對(duì)于③含有量詞的命題的否定,先換量詞,再否定結(jié)論,故③正確;
對(duì)于④命題“若x2-3x+2=0,則x=1”的否命題是:若“若x2-3x+2≠0,則x≠1”是真命題,故④錯(cuò),
故選:B

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,著重考查四種命題之間的關(guān)系及真假判斷,含有邏輯聯(lián)結(jié)詞的命題的否定與否命題,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比數(shù)列.?dāng)?shù)列$\{\frac{b_n}{a_n}\}$是首項(xiàng)為1公比為2的等比數(shù)列,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.化簡(2a-3b-${\;}^{\frac{2}{3}}$)•(-3a-1b)÷(4a-4b-${\;}^{\frac{5}{3}}$)得-$\frac{3}{2}$b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.用描點(diǎn)法畫出函數(shù)f(x)=x2-4x+3的圖象,并根據(jù)圖象回答下面問題.
列表
x01234
y=x2-4x+3
圖象:

問題(1):此函數(shù)的定義域?yàn)镽.
問題(2):此函數(shù)的值域?yàn)閇-1,+∞).
問題(3):若此函數(shù)的定義域?yàn)椋?,2],則值域?yàn)閇-1,0).
問題(4):若此函數(shù)的定義域?yàn)椋?3,4],試求此函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示的程序框圖,其作用是:輸入x的值,輸出相應(yīng)的y值.若要使輸入的x值與輸出的y值相等,這樣的x值有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.根據(jù)下面的要求,求S=1+2+┅+100值.
(Ⅰ)請(qǐng)將程序框圖補(bǔ)充完整;
(Ⅱ)求出(1)中輸出S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,邊長為a的等邊三角形ABC的中線AF與中位線DE交于點(diǎn)G,已知△A'DE是△ADE繞DE旋轉(zhuǎn)過程中的一個(gè)圖形,則下列命題中正確的是( 。
①FA'⊥DE;
②BC∥平面A'DE;
③三棱錐A'-FED的體積有最大值.
A.B.①②C.①②③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對(duì)區(qū)間I上有定義的函數(shù)f(x),記f(I)={y|y=f(x),x∈I},已知函數(shù)y=f(x)的定義域?yàn)閇0,3],自變量x與因變量y一一對(duì)應(yīng),且f([1,2])=[0,1),f([0,1])=[2,4),若方程f(x)-x=0有解x0,則x0=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知四邊形ABDC是圓O的內(nèi)接四邊形,B,D是圓O上的動(dòng)點(diǎn),AD與BC交于F,圓O的切線CE(C為切點(diǎn))與線段AB的延長線交于E,∠BCD=∠CBD.
(1)證明:CD是∠BCE的平分線;
(2)若AD過圓心,BC=BE,AE=2,求AB的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案