若α、β是兩個(gè)不同的平面,m、n是兩條不同直線,則下列命題不正確的是

A.α∥β,m⊥α,則m⊥β

B.m∥n,m⊥α,則n⊥α

C. n∥α,n⊥β,則α⊥β

D.αβ=m,n與α、β所成的角相等,則m⊥n

 

【答案】

D

【解析】

試題分析:對于選項(xiàng)A,由于α∥β,m⊥α,如果一條直線垂直于平行平面中的一個(gè),必定垂直與另一個(gè)平面,那惡么顯然成立。

對于選項(xiàng)B,兩條平行線中一條垂直該平面,則另一條也垂直于該平面,成立。

對于選項(xiàng)C,一條直線平行與一個(gè)平面,還垂直于另一個(gè)平面,在這兩個(gè)平面必行垂直也成立。

對于選項(xiàng)D,由于與兩個(gè)相交平面所成的角相等的直線,不一定與其交線垂直,因此錯(cuò)誤,故選D.

考點(diǎn):本試題考查了空間中點(diǎn)線面的位置掛系運(yùn)用

點(diǎn)評:解決該試題的關(guān)鍵是對于空間中的線面垂直和面面垂直關(guān)系的判定定理和性質(zhì)定理的熟練運(yùn)用。同時(shí)能借助于現(xiàn)實(shí)中的長方體特殊模型來加以判定,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)α、β是兩個(gè)不同的平面,l、m是兩條不重合的直線,下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、給定下列四個(gè)命題:
(1)給定空間中的直線l及平面α,“直線l與平面α內(nèi)無數(shù)條直線垂直”是“直線l與平面α垂直”的充分不必要條件;
(2)已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的必要不充分條件;
(3)已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,若m∥α,n∥β,m⊥n,則α⊥β;
(4)在三棱柱ABC-A1B1C1中,各棱長相等,側(cè)棱垂直于底面,點(diǎn)D是側(cè)面BB1C1C的中心,則AD與平面BB1C1C所成角的大小是60°.
上述命題中,真命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

m,n是兩條不同的直線,α、β是兩個(gè)不同的平面,給出以下命題:
①若m?α,n∥α,則m∥n;
②若m?α,n?β,α⊥β,α∩β=l,m⊥l,則m⊥n;
③若m⊥α,m⊥n,則n∥α;
④若m⊥α,m⊥β,則α∥β;
⑤若α⊥β,m⊥α,n∥β,則m∥n,
其中正確命題的序號(hào)是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b是空間中兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)l、m、n是三條不同的直線,α、β是兩個(gè)不同的平面,則下列三個(gè)命題中正確的命題是(  )
(1)l∥β,α∥β,則l∥α;
(2)若l∥n,m∥n,則l∥m;
(3)若 l⊥α,m⊥β,α⊥β,則l⊥m.

查看答案和解析>>

同步練習(xí)冊答案