7.已知tanx=3,則$\frac{sinx+3cosx}{2sinx-3cosx}$=2.

分析 原式分子分母除以cosx,利用同角三角函數(shù)間的基本關(guān)系化簡(jiǎn),將tanx的值代入計(jì)算即可求出值.

解答 解:∵tanx=3,
∴原式=$\frac{tanx+3}{2tanx-3}$=$\frac{3+3}{2×3-3}$=2.
故答案是:2.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)間的基本關(guān)系,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知關(guān)于x的方程x2-alnx-ax=0有唯一解,則實(shí)數(shù)a的取值范圍為(-∞,0)∪{1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和為An,nan+1=An+$\frac{3}{2}$n(n+1),a1=2;等比數(shù)列{bn}的前n項(xiàng)和為Bn,Bn+1、Bn、Bn+2成等差數(shù)列,b1=-2.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)求數(shù)列{an•bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在等比數(shù)列{an}中,Sn=3n-1,求{an}的公比q和通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知x>0,y>0,lg2x+lg8y=lg4,則$\frac{1}{x}+\frac{1}{3y}$的最小值為( 。
A.2B.$2\sqrt{2}$C.4D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.i3=( 。
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)y=1-$\frac{1}{cosx}$的定義域是{x∈R|x≠kπ+$\frac{π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)定義域?yàn)镽的函數(shù)f(x)=$\left\{\begin{array}{l}{lg|x-2|,x≠2}\\{4,x=2}\end{array}\right.$,則關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同的實(shí)數(shù)解xi(i=1,2,3,4,5),則f(x1+x2+x3+x4+x5+2)=( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)f(x)=x4+ax3+bx2+cx+d,其中a、b、c、d為常數(shù).如果f(1)=10,f(2)=20,f(3)=30,那么,$\frac{1}{4}$[f(4)+f(0)]的值是( 。
A.1B.4C.7D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案