設(shè)P為拋物線y=x2上一點(diǎn),當(dāng)P點(diǎn)到直線x-y+2=0的距離最小時(shí),P點(diǎn)的坐標(biāo)為_(kāi)_____.
x-y+2=0
y=x2
解得
x=2
y=4
x=-1
y=1
,
故拋物線y=x2 和直線x-y+2=0相交于兩點(diǎn)(2,4)、(-1,1).
故當(dāng)P的坐標(biāo)為(2,4)或(-1,1)時(shí),P點(diǎn)到直線x-y+2=0的距離最小為0,
故答案為 (2,4)、(-1,1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直線l過(guò)x軸上的點(diǎn)M,l交橢圓
x2
8
+
y2
4
=1
于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)若M的坐標(biāo)為(2,0),當(dāng)OA⊥OB時(shí),求直線l的方程;
(2)若M的坐標(biāo)為(1,0),設(shè)直線l的斜率為k(k≠0),是否存直線l,使得l垂直平分橢圓的一條弦?如果存在,求k的取值范圍;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將曲線C1:(x-4)2+y2=4所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的
1
2
得到曲線C2,將曲線C2向左(x軸負(fù)方向)平移4個(gè)單位,得到曲線C3
(Ⅰ)求曲線C3的方程;
(Ⅱ)垂直于x軸的直線l與曲線C3相交于C、D兩點(diǎn)(C、D可以重合),已知A(-2,0),B(2,0),直線AC、BD相交于點(diǎn)P,求P點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線C1x2-
y2
4
=1

(1)求與雙曲線C1有相同焦點(diǎn),且過(guò)點(diǎn)P(4,
3
)的雙曲線C2的標(biāo)準(zhǔn)方程;
(2)直線l:y=x+m分別交雙曲線C1的兩條漸近線于A、B兩點(diǎn).當(dāng)
OA
OB
=3
時(shí),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),M是橢圓短軸的一個(gè)端點(diǎn),過(guò)F1的直線l與橢圓交于A,B兩點(diǎn),△MF1F2的面積為4,△ABF2的周長(zhǎng)為8
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)Q的坐標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個(gè)圓,使得該圓與直線PF1,PF2都相切,如存在,求出P點(diǎn)坐標(biāo)及圓的方程,如不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線l與橢圓
x2
36
+
y2
9
=1
交于A和B兩點(diǎn),點(diǎn)(4,2)是線段AB的中點(diǎn),則直線l的方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖橢圓C的方程為
y2
a2
+
x2
b2
=1(a>b>0)
,A是橢圓C的短軸左頂點(diǎn),過(guò)A點(diǎn)作斜率為-1的直線交橢圓于B點(diǎn),點(diǎn)P(1,0),且BPy軸,△APB的面積為
9
2

(1)求橢圓C的方程;
(2)在直線AB上求一點(diǎn)M,使得以橢圓C的焦點(diǎn)為焦點(diǎn),且過(guò)M的雙曲線E的實(shí)軸最長(zhǎng),并求此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)M(3
2
,
2
),橢圓的離心率e=
2
2
3

(1)求橢圓C的方程;
(2)過(guò)點(diǎn)M作兩直線與橢圓C分別交于相異兩點(diǎn)A、B.若∠AMB的平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請(qǐng)給予證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是F1(-
2
,0),F2(
2
,0)

(1)若橢圓C上一動(dòng)點(diǎn)M1滿足|
M1F1
|+|
M1F2
|=4,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過(guò)點(diǎn)P(0,t)(t<0)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為2
3
,求P點(diǎn)的坐標(biāo);
(3)已知m+n=-
cosθ
sinθ
,mn=-
3
sinθ
(m≠n,θ∈
(0,π)),是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過(guò)兩點(diǎn)(m,m2),(n,n2)的直線的最短距離dmin=
a2+b2-b
.若存在,求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案