【題目】某市組織高三全體學(xué)生參加計(jì)算機(jī)操作比賽,等級(jí)分為1至10分,隨機(jī)調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績(jī),得到樣本數(shù)據(jù)如下:
(1)計(jì)算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.
(2)從A校樣本數(shù)據(jù)成績(jī)分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級(jí)的比賽,求這2人成績(jī)之和大于或等于15的概率.
【答案】(1)A校的學(xué)生的計(jì)算機(jī)成績(jī)比較穩(wěn)定,總體得分情況比B校好.(2)
【解析】
(1)分別求出A校樣本的平均成績(jī)、方差和B校樣本的平均成績(jī)、方差,從而得到兩校學(xué)生的計(jì)算機(jī)成績(jī)平均分相同,A校學(xué)生的計(jì)算機(jī)成績(jī)比較穩(wěn)定,總體得分情況比較集中,
(2)根據(jù)分成抽樣求出故抽取的7分有4人即為,8分和9分的學(xué)生中各為1人,記為,,一一列舉所有的基本事件,再找到滿足條件的基本事件,根據(jù)概率公式計(jì)算即可.
(1)從A校樣本數(shù)據(jù)的條形圖可知:成績(jī)分別為4分、5分、6分、7分、8分、9分的學(xué)生分別有:6人、15人、21人、12人、3人、3人.
A校樣本的平均成績(jī)?yōu)?/span>,
A校樣本的方差為.
從B校樣本數(shù)據(jù)統(tǒng)計(jì)表可知:
B校樣本的平均成績(jī)?yōu)?/span>,
B校樣本的方差為.
因?yàn)?/span>所以兩校學(xué)生的計(jì)算機(jī)成績(jī)平均分相同,又因?yàn)?/span>,所以A校的學(xué)生的計(jì)算機(jī)成績(jī)比較穩(wěn)定,總體得分情況比B校好.
(2) 依題意,A校成績(jī)?yōu)?/span>7分的學(xué)生應(yīng)抽取的人數(shù)為:人,
設(shè)為; 成績(jī)?yōu)?/span>8分的學(xué)生應(yīng)抽取的人數(shù)為:人,設(shè)為;
成績(jī)?yōu)?/span>9分的學(xué)生應(yīng)抽取的人數(shù)為:人,設(shè)為;
所以,所有基本事件有:共15個(gè),
其中,滿足條件的基本事件有:共9個(gè),
所以從抽取的6人中任選2人參加更高一級(jí)的比賽,這2人成績(jī)之和大于或等于15的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),,恒有. 數(shù)列滿足,且N*.
(1)求的解析式;
(2)證明:數(shù)列單調(diào)遞增;
(3)記. 若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)和投資單位:萬元).
(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).
①若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤(rùn)?
②問:如果你是廠長(zhǎng),怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤(rùn)?其最大利潤(rùn)約為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為全面貫徹黨的教育方針,堅(jiān)持立德樹人,適應(yīng)經(jīng)濟(jì)社會(huì)發(fā)展對(duì)多樣化高素質(zhì)人才的需要,按照國家統(tǒng)一部署,湖南省高考改革方案從2018年秋季進(jìn)入高一年級(jí)的學(xué)生開始正式實(shí)施.新高考改革中,明確高考考試科目由語文、數(shù)學(xué)、英語科,及考生在思想政治、歷史、地理、物理、化學(xué)、生物個(gè)科目中自主選擇的科組成,不分文理科.假設(shè)個(gè)自主選擇的科目中每科被選擇的可能性相等,每位學(xué)生選擇每個(gè)科目互不影響,甲、乙、丙為某中學(xué)高一年級(jí)的名學(xué)生.
(1)求這名學(xué)生都選擇了物理的概率.
(2)設(shè)為這名學(xué)生中選擇物理的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓與軸交于、兩點(diǎn),動(dòng)直線()與軸、軸分別交于點(diǎn)、,與圓交于、兩點(diǎn)(點(diǎn)縱坐標(biāo)大于點(diǎn)縱坐標(biāo)).
(1)若,點(diǎn)與點(diǎn)重合,求點(diǎn)的坐標(biāo);
(2)若,,求直線將圓分成的劣弧與優(yōu)弧之比;
(3)若,設(shè)直線、的斜率分別為、,是否存在實(shí)數(shù)使得?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和為,(n∈N*).
(1)證明數(shù)列是等比數(shù)列,求出數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和;
(3)數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,求出一組符合條件的項(xiàng);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最大值和最小值;
(2)若對(duì)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,近日我漁船編隊(duì)在島周圍海域作業(yè),在島的南偏西20°方向有一個(gè)海面觀測(cè)站,某時(shí)刻觀測(cè)站發(fā)現(xiàn)有不明船只向我漁船編隊(duì)靠近,現(xiàn)測(cè)得與相距31海里的處有一艘海警船巡航,上級(jí)指示海警船沿北偏西40°方向,以40海里/小時(shí)的速度向島直線航行以保護(hù)我漁船編隊(duì),30分鐘后到達(dá)處,此時(shí)觀測(cè)站測(cè)得間的距離為21海里.
(Ⅰ)求的值;
(Ⅱ)試問海警船再向前航行多少分鐘方可到島?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地沿某條公路行駛一共200公里,遇到紅燈個(gè)數(shù)的概率如下表所示:
紅燈個(gè)數(shù) | 0 | 1 | 2 | 3 | 4 | 5 | 6個(gè)及6個(gè)以上 |
概率 | 0.02 | 0.1 | 0.35 | 0.2 | 0.1 | 0.03 |
(1)求表中字母的值;
(2)求至少遇到4個(gè)紅燈的概率;
(3)求至多遇到5個(gè)紅燈的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com