13.已知過(guò)點(diǎn)P(4,1)的直線l被圓(x-3)2+y2=4所截得的弦長(zhǎng)為$2\sqrt{3}$,求直線l的方程.

分析 根據(jù)圓心與半徑、弦長(zhǎng)和弦心距的關(guān)系,利用點(diǎn)到直線的距離公式,求出直線的斜率,即可求出對(duì)應(yīng)直線的方程.

解答 解:圓(x-3)2+y2=4的圓心坐標(biāo)為(3,0),
半徑長(zhǎng)為r=2;…(2分)
因?yàn)橹本l被圓所截得的弦長(zhǎng)是$2\sqrt{3}$,
所以弦心距為$\sqrt{{2^2}-{{(\sqrt{3})}^2}}=1$;…(4分)
(1)當(dāng)直線l的斜率不存在時(shí),x=4,
此時(shí)弦心距為1,符合題意;…(6分)
(2)當(dāng)直線l的斜率存在時(shí),
設(shè)直線l的方程為y-1=k(x-4),
即kx-y-4k+1=0;
由題意可得$\frac{{|{3k-4k+1}|}}{{\sqrt{{k^2}+1}}}=1$,…(8分)
解得k=0,…(11分)
所以所求直線方程為y=1;
綜上所述,所求直線方程為x=4或y=1.…(12分)

點(diǎn)評(píng) 本題考查了直線與圓的方程和應(yīng)用問(wèn)題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=1+a•($\frac{1}{3}$)x+($\frac{1}{9}$)x
(1)當(dāng)a=-2,x∈[1,2]時(shí),求函數(shù)f(x)的最大值與最小值;
(2)若函數(shù)f(x)在[1,+∞)上都有-2≤f(x)≤3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合A{x|$\frac{2-x}{3+x}$≥0},B={x|x2-2x-3<0},C={x|x2-(2a+1)x+a(a+1)<0}.
(Ⅰ)求集合A,B及A∪B;
(Ⅱ)若C⊆(A∩B),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若${∫}_{1}^{2}$(x-a)dx=${∫}_{0}^{\frac{3π}{4}}$cos2xdx,則a等于(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知“若點(diǎn)P(x0,y0)在雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上,則C在點(diǎn)P處的切線方程為$\frac{{{x_0}x}}{a^2}-\frac{{{y_0}y}}{b^2}$=1”.現(xiàn)已知雙曲線C:$\frac{x^2}{4}-\frac{y^2}{12}$=1和點(diǎn)Q(1,t)(t≠±$\sqrt{3}$),過(guò)點(diǎn)Q作雙曲線C的兩條切線,切點(diǎn)分別為M,N,則直線MN過(guò)定點(diǎn)( 。
A.$(0,2\sqrt{3})$B.$(0,-2\sqrt{3})$C.(4,0)D.(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.定義在(0,$\frac{π}{2}$)上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)<f′(x)tanx成立.則下列不等關(guān)系成立的是( 。
A.$\sqrt{3}$•f($\frac{π}{6}$)>2cos1•f(1)B.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)C.$\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$)D.$\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合A={1,a,b},B={a,a2,ab},若集合A=B,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在正三棱柱ABC-A1B1C1中,若AB=BB1,D是CC1中點(diǎn),則CA1與BD所成角的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.過(guò)點(diǎn)作(3,2)圓(x-1)2+y2=1的兩條切線,切點(diǎn)分別為A、B,則直線AB的方程為(  )
A.2x+2y-3=0B.x+2y-3=0C.2x+y-3=0D.2x+2y+3=0

查看答案和解析>>

同步練習(xí)冊(cè)答案