某工廠有25周歲以上(含2S周歲)工人300名,25周歲以下工人200名為研究工人的日平均生產(chǎn)量是否與年齡有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60), [60,70), [70,80), [80,90), [90,100), 分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。
(1)求樣本中“25周歲以上(含25周歲)組”抽取的人數(shù)、日生產(chǎn)量平均數(shù);
(2)若“25周歲以上組”中日平均生產(chǎn)90件及90件以上的稱為“生產(chǎn)能手”;“25周歲以下組”中日平均生產(chǎn)不足60件的稱為“菜鳥”。從樣本中的“生產(chǎn)能手”和”菜鳥”中任意抽取2人,求這2人日平均生產(chǎn)件數(shù)之和X的分布列及期望。(“生產(chǎn)能手”日平均生產(chǎn)件數(shù)視為95件,“菜鳥”日平均生產(chǎn)件數(shù)視為55件)。
(Ⅰ)樣本中有周歲以上組工人名,平均數(shù)為73.5;(2).
解析試題分析:(Ⅰ)分層抽樣實質(zhì)上就是按比例抽樣,根據(jù)比例即可求得樣本中有周歲以上組工人的人數(shù);
根據(jù)頻率分布直方圖求平均數(shù)的公式為,其中為第組數(shù)據(jù)的頻率,是第組數(shù)據(jù)的中間值.由此公式可得樣本中“25周歲以上(含25周歲)組”的日生產(chǎn)量平均數(shù).
(2)首先根據(jù)頻率求出樣本中“周歲以上組”中的 “生產(chǎn)能手”的人數(shù)和 “25周歲以下組”中的“菜鳥”工人的人數(shù),用字母表示這些工人,然后一一列出所有可能結(jié)果,再數(shù)出改好能組成師徒組的可能結(jié)果,由古典概型概率公式求得所求概率.
試題解析:(Ⅰ)由已知得,樣本中有周歲以上組工人名 4分
樣本中“25周歲以上(含25周歲)組”的日生產(chǎn)量平均數(shù)為 5分
(2)由樣本中“周歲以上組”中日平均生產(chǎn)90件及90件以上的 “生產(chǎn)能手”工人有(人), 記為 .“25周歲以下組”中日平均生產(chǎn)不足60件的稱為“菜鳥”工人有(人),記為. 8分
從中隨機地抽取兩人,所有可能的結(jié)果共有以下10種:
10分
其中,2人恰好能組成師徒組的可能結(jié)果共有以下6種:
.
由古典概型的概率公式得所求概率為: 12分
考點:1、頻率分布直方圖;2、古典概型.
科目:高中數(shù)學 來源: 題型:解答題
某種產(chǎn)品特約經(jīng)銷商根據(jù)以往當?shù)氐男枨笄闆r,得出如下該種產(chǎn)品日需求量的頻率分布直方圖.
(1)求圖中的值,并估計日需求量的眾數(shù);
(2)某日,經(jīng)銷商購進130件該種產(chǎn)品,根據(jù)近期市場行情,當天每售出件能獲利30元,未售出的部分,每件虧損20元.設當天的需求量為件(),純利潤為元.
(。⿲表示為的函數(shù);
(ⅱ)根據(jù)直方圖估計當天純利潤不少于元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某高校在2013年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如圖所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | ① | 0.350 | |
第3組 | 30 | ② | |
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計 | 100 | 1.00 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
從某年級學生中,隨機抽取50人,其體重(單位:千克)的頻數(shù)分布表如下:
分組(體重) | | |||
頻數(shù)(人) | | | | |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
佛山某中學高三(1)班排球隊和籃球隊各有名同學,現(xiàn)測得排球隊人的身高(單位:)分別是:、、、、、、、、、,籃球隊人的身高(單位:)分別是:、、、、、、、、、.
(Ⅰ)請把兩隊身高數(shù)據(jù)記錄在如圖所示的莖葉圖中,并指出哪個隊的身高數(shù)據(jù)方差較小(無需計算);
(Ⅱ)現(xiàn)從兩隊所有身高超過的同學中隨機抽取三名同學,則恰好兩人來自排球隊一人來自籃球隊的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某園藝師用兩種不同的方法培育了一批珍貴樹苗,在樹苗3個月大的時候,隨機抽取甲、乙兩種方法培育的樹苗各10株,測量其高度,得到的莖葉圖如圖所示(單位:cm).
(Ⅰ)依莖葉圖判斷用哪種方法培育的樹苗的平均高度大?
(Ⅱ)現(xiàn)從用兩種方法培育的高度不低于80cm的樹苗中隨機抽取兩株,求至少有一株是甲方法培育的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)鄭州市為了緩解交通壓力,大力發(fā)展公共交通,提倡多坐公交少開車.為了調(diào)查市民乘公交車的候車情況,交通主管部門從在某站臺等車的45名候車乘客中隨機抽取15人,按照他們的候車時間(單位:分鐘)作為樣本分成6組,如下表所示:
(1)估計這45名乘客中候車時間少于12分鐘的人數(shù);
(2)若從上表第四、五組的5人中隨機抽取2人做進一步的問卷調(diào)查,求抽到的2人恰好來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某中學對高三年級進行身高統(tǒng)計,測量隨機抽取的20名學生的身高,其頻率分布直方圖如下(單位:cm)
(1)根據(jù)頻率分布直方圖,求出這20名學生身高中位數(shù)的估計值和平均數(shù)的估計值.
(2)在身高為140—160的學生中任選2個,求至少有一人的身高在150—160之間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某地區(qū)因干旱缺水,政府向市民宣傳節(jié)約用水,并進行廣泛動員 三個月后,統(tǒng)計部門在一個小區(qū)隨機抽取了戶家庭,分別調(diào)查了他們在政府動員前后三個月的月平均用水量(單位:噸),將所得數(shù)據(jù)分組,畫出頻率分布直方圖(如圖所示)
動員前 動員后
(Ⅰ)已知該小區(qū)共有居民戶,在政府進行節(jié)水動員前平均每月用水量是噸,請估計該小區(qū)在政府動員后比動員前平均每月節(jié)約用水多少噸;
(Ⅱ)為了解動員前后市民的節(jié)水情況,媒體計劃在上述家庭中,從政府動員前月均用水量在內(nèi)的家庭中選出戶作為采訪對象,其中甲、乙兩家在備選之列,求恰好選中他們兩家作為采訪對象的概率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com