(本小題滿分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設(shè)g(x)=x2-2x,若對任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實數(shù)a的取值范圍.
f′(x)=ax-(2a+1)+(x>0).
(1) f′(1)=f′(3),解得a=.(4分)
(2) f′(x)=(x>0).
①當(dāng)0<a<時,>2,
在區(qū)間(0,2)和上,f′(x)>0;
在區(qū)間上,f′(x)<0,
故f(x)的單調(diào)遞增區(qū)間是(0,2)和,單調(diào)遞減區(qū)間是.(6分)
②當(dāng)a=時,f′(x)=≥0,故f(x)的單調(diào)遞增區(qū)間是(0,+∞).(8分)
③當(dāng)a>時,0<<2,在區(qū)間和(2,+∞)上,f′(x)>0;在區(qū)間上,f′(x)<0,故f(x)的單調(diào)遞增區(qū)間是和(2,+∞),單調(diào)遞減區(qū)間是.(10分)
(3) 由已知,在(0,2]上有f(x)max<g(x)max.(11分)
由已知,g(x)max=0,由(2)可知,
①當(dāng)0<a≤時,f(x)在(0,2]上單調(diào)遞增,
故f(x)max=f(2)=2a-2(2a+1)+2ln2
=-2a-2+2ln2,
∴-2a-2+2ln2<0,解得a>ln2-1,ln2-1<0,故0<a≤.(13分)
②當(dāng)a>時,f(x)在]上單調(diào)遞增,在]上單調(diào)遞減,
故f(x)max=f=-2--2lna.
由a>可知lna>ln>ln=-1,2lna>-2,-2lna<2,
∴-2-2lna<0,f(x)max<0,(15分)
綜上所述,a>0.(16分)
解析
科目:高中數(shù)學(xué) 來源: 題型:
(2010江蘇卷)18、(本小題滿分16分)
在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點為A、B,右焦點為F。設(shè)過點T()的直線TA、TB與橢圓分別交于點M、,其中m>0,。
(1)設(shè)動點P滿足,求點P的軌跡;
(2)設(shè),求點T的坐標(biāo);
(3)設(shè),求證:直線MN必過x軸上的一定點(其坐標(biāo)與m無關(guān))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年泰州中學(xué)高一下學(xué)期期末測試數(shù)學(xué) 題型:解答題
(本小題滿分16分)
函數(shù),(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對任意時,恒成立,求實數(shù)的范圍;
(Ⅲ)如果,當(dāng)“對任意恒成立”與“在內(nèi)必有解”同時成立時,求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分) 本題請注意換算單位
某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達(dá)式;
(總開發(fā)費用=總建筑費用+購地費用)
(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應(yīng)建為多少層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)設(shè)命題:方程無實數(shù)根; 命題:函數(shù)
的值域是.如果命題為真命題,為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省高一第三階段檢測數(shù)學(xué)卷 題型:解答題
(本小題滿分16分)
已知函數(shù)f(x)=為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
(Ⅰ)求f()的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標(biāo)延長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com