5.在△ABC中,已知AB=AC=2BC,則sinA=$\frac{\sqrt{15}}{8}$.

分析 令A(yù)B=AC=2BC=2m.即可得cosA=$\frac{A{C}^{2}+A{B}^{2}-B{C}^{2}}{2AB•AC}$,sinA

解答 解:令A(yù)B=AC=2BC=2m,由余弦定理可得cosA=$\frac{A{C}^{2}+A{B}^{2}-B{C}^{2}}{2AB•AC}$=$\frac{7}{8}$,
∵A∈(0,π),∴sinA=$\sqrt{1-si{n}^{2}A}=\frac{\sqrt{15}}{8}$,
故答案為:$\frac{{\sqrt{15}}}{8}$.

點(diǎn)評 本題考查了余弦定理、平方關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an} 通項(xiàng)公式為an=Atn-1+Bn+1,其中A,B,t 為常數(shù),且t>1,n∈N*.等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)為實(shí)常數(shù).
(1)若A=0,B=1,求$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$ 的值;
(2)若A=1,B=0,是否存在常數(shù)t 使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046?若存在,求常數(shù)t 的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)M,N,P是單位圓上三點(diǎn),若MN=1,則$\overrightarrow{MN}•\overrightarrow{MP}$的最大值為( 。
A.$\frac{3}{2}$B.$\frac{1}{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知P(a,1)是角β終邊上的一點(diǎn),且$cosβ=-\frac{{3\sqrt{10}}}{10}$,
(1)求a,sinβ,tanβ的值;   
(2)求$\frac{{sin(\frac{π}{2}+β)cos(-π-β)}}{{sin(\frac{11π}{2}-β)cos(\frac{9π}{2}+β)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n,數(shù)列{bn}滿足:bn=$\sqrt{{2^{a_n}}}$.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知復(fù)數(shù)z=1+i(i為虛數(shù)單位),a、b∈R,
(Ⅰ)若$ω={z^2}+3\overline z-4$,求|ω|;
(Ⅱ)若$\frac{{{z^2}+az+b}}{{{z^2}-z+1}}=1-i$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將等差數(shù)列1,4,7…,按一定的規(guī)則排成了如圖所示的三角形數(shù)陣.根據(jù)這個(gè)排列規(guī)則,數(shù)陣中第20行從左至右的第2個(gè)數(shù)是( 。
A.571B.574C.577D.580

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一組數(shù)據(jù)2,x,4,5,10的平均值是5,則此組數(shù)據(jù)的標(biāo)準(zhǔn)差是$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.對于兩個(gè)等差數(shù)列{an}和{bn},有a1+b100=100,b1+a100=100,則數(shù)列{an+bn}的前100項(xiàng)之和S100為10000.

查看答案和解析>>

同步練習(xí)冊答案