【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲 | 82 | 81 | 79 | 78 | 95 | 88 | 93 | 84 |
乙 | 92 | 95 | 80 | 75 | 83 | 80 | 90 | 85 |
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個)考慮,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由.
【答案】
(1)解:莖葉圖如下:
(2)解:派甲參加比較合適,理由如下:
(90﹣85)2+(92﹣85)2+(95﹣85)2]=41
∵ = , ,
∴甲的成績較穩(wěn)定,派甲參賽比較合適
【解析】(1)將成績的十位數(shù)作為莖,個位數(shù)作為葉,可得莖葉圖;(2)計算甲與乙的平均數(shù)與方差,即可求得結(jié)論.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解莖葉圖(莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少),還要掌握平均數(shù)、中位數(shù)、眾數(shù)(⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù))的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】化簡下列各式:
(1)sin23°cos7°+cos23°sin367°;
(2)(1+lg5)0+(﹣ ) +lg ﹣lg2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2 sinxcosx+1﹣2sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的 ,把所得到的圖象再向左平移 單位,得到的函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間 上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知A為銳角,f(A)= ,b=2,c=3,求cos(A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),五邊形中, .如圖(2),將沿折到的位置,得到四棱錐.點(diǎn)為線段的中點(diǎn),且平面.
(1)求證:平面平面;
(2)若直線與所成角的正切值為,設(shè),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓: 的離心率為,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線與橢圓交于, 兩點(diǎn)(, 不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且.直線與軸、軸分別交于兩點(diǎn).設(shè)直線的斜率分別為,證明存在常數(shù)使得,并求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)與向量 =(2,sinC)共線,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是根據(jù)部分城市某年6月份的平均氣溫(單位:℃)數(shù)據(jù)得到的樣本頻率分布直方圖,其中平均氣溫的范圍是[20.5,26.5].已知樣本中平均氣溫不大于22.5℃的城市個數(shù)為11,則樣本中平均氣溫不低于25.5℃的城市個數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com