15.已知向量$\overrightarrow a=(1,m)$,$\overrightarrow b=(-1,2m+1)$,且$\overrightarrow a∥\overrightarrow b$,則m=-$\frac{1}{3}$.

分析 利用向量平行的性質(zhì)直接求解.

解答 解:∵向量$\overrightarrow a=(1,m)$,$\overrightarrow b=(-1,2m+1)$,且$\overrightarrow a∥\overrightarrow b$,
∴$\frac{1}{-1}=\frac{m}{2m+1}$,
解得m=-$\frac{1}{3}$.
故答案為:$-\frac{1}{3}$.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求不地,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量平行的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a∈R,命題“?x∈(0,+∞),等式lnx=a成立”的否定形式是(  )
A.?x∈(0,+∞),等式lnx=a不成立B.?x∈(-∞,0),等式lnx=a不成立
C.?x0∈(0,+∞),等式lnx0=a不成立D.?x0∈(-∞,0),等式lnx0=a不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=2sin2x-1,若將其圖象沿x軸向右平移a個(gè)單位(a>0),所得圖象關(guān)于原點(diǎn)對(duì)稱,則實(shí)數(shù)a的最小值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線y2=2px(p>0)上一點(diǎn)M到焦點(diǎn)F的距離等于3p,則直線MF的斜率為(  )
A.±$\sqrt{5}$B.±1C.+$\frac{5}{2}$D.±$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)變量x,y滿足約束條件:$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,則目標(biāo)函數(shù)且ax+y=z的最小值為$\frac{1}{2}$時(shí)實(shí)數(shù)a的取值范圍是$\left\{{-\frac{1}{4}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.過點(diǎn)C(2,-1)且與直線x+y-3=0垂直的直線是( 。
A.x+y-1=0B.x+y+1=0C.x-y-3=0D.x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,BC=1,AB=2,$PC=PD=\sqrt{2}$,E為PA中點(diǎn).
(Ⅰ)求證:PC∥平面BED;
(Ⅱ)求二面角A-PC-D的余弦值;
(Ⅲ)在棱PC上是否存在點(diǎn)M,使得BM⊥AC?若存在,求$\frac{PM}{PC}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在公差為d的等差數(shù)列{an}中,“d>1”是“{an}是遞增數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一直角梯形的直觀圖是一個(gè)如圖所示的梯形,且OA′=2,B′C′=OC′=1,則該直角梯形的面積為( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案