4.已知某程序框圖如圖所示,則執(zhí)行該程序后輸出的結(jié)果是( 。
A.2B.$\frac{1}{2}$C.-1D.-2

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知該程序的作用是利用循環(huán)計(jì)算變量a的值并輸出,依次寫出每次循環(huán)得到的a,i的值,當(dāng)i=11時(shí),滿足條件,計(jì)算即可得解.

解答 解:程序運(yùn)行過程中,各變量的值如下表示:
                  a     i          是否繼續(xù)循環(huán)
循環(huán)前        2    1
第一圈       $\frac{1}{2}$    2             是
第二圈-1     3            是
第三圈       2     4            是

第9圈        2   10            是
第10圈     $\frac{1}{2}$    11           是
故最后輸出的a值為$\frac{1}{2}$.
故選:B.

點(diǎn)評 本題主要考查了循環(huán)結(jié)構(gòu),寫程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對任意x∈R*,不等式lnx≤ax恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.(0,$\frac{1}{e}$)B.[$\frac{1}{e}$,+∞)C.(-∞,$\frac{1}{e}$]D.[e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知橢圓具有性質(zhì):若M,N是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0且a,b為常數(shù))上關(guān)于y軸對稱的兩點(diǎn),P是橢圓上的左頂點(diǎn),且直線PM,PN的斜率都存在(記為kPM,kPN),則kPM•kPN=$\frac{^{2}}{{a}^{2}}$.類比上述性質(zhì),可以得到雙曲線的一個(gè)性質(zhì),并根據(jù)這個(gè)性質(zhì)得:若M,N是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上關(guān)于y軸對稱的兩點(diǎn),P是雙曲線C的左頂點(diǎn),直線PM,PN的斜率都存在(記為kPM,kPN),雙曲線的離心率e=$\sqrt{5}$,則kPM•kPN等于-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知sin(α+β)=$\frac{2}{3}$,sin(α-β)=$\frac{1}{3}$,則$\frac{tanα}{tanβ}$的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,經(jīng)過村莊A有兩條互相垂直的筆直公路AB和AC,根據(jù)規(guī)劃擬在兩條公路圍成的直角區(qū)域內(nèi)建一工廠P,為了倉庫存儲(chǔ)和運(yùn)輸方便,在兩條公路上分別建兩個(gè)倉庫M,N(異于村莊A,將工廠P及倉庫M,N近似看成點(diǎn),且M,N分別在射線AB,AC上),要求MN=2,PN=1(單位:km),PN⊥MN.
(1)設(shè)∠AMN=θ,將工廠與村莊的距離PA表示為θ的函數(shù),記為l(θ),并寫出函數(shù)l(θ)的定義域;
(2)當(dāng)θ為何值時(shí),l(θ)有最大值?并求出該最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知$\overrightarrow{a}$=(2,m),$\overrightarrow$=(1,1),$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$+$\overrightarrow$|則實(shí)數(shù)m的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,F(xiàn)1,F(xiàn)2分別為橢圓的左右焦點(diǎn),P為橢圓上任意一點(diǎn),△PF1F2的周長為$4+2\sqrt{3}$,直線l:y=kx+m(k≠0)與橢圓C相交于A,B兩點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l與圓x2+y2=1相切,過橢圓C的右焦點(diǎn)F2作垂直于x軸的直線,與橢圓相交于M,N兩點(diǎn),與線段AB相交于一點(diǎn)(與A,B不重合).求四邊形MANB面積的最大值及取得最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若$z=\frac{3+4i}{i}$,則|z|=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,曲線M:y2=x與曲線N:(x-4)2+2y2=m2(m>0)相交于A、B、C、D四個(gè)點(diǎn).
(1)求m的取值范圍;
(2)求四邊形ABCD的面積的最大值及此時(shí)對角線AC與BD的交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案