10.函數(shù)f(x)=2${\;}^{\frac{1}{2}-x}}$的大致圖象為( 。
A.B.C.D.

分析 判斷f(x)的單調(diào)性,結(jié)合f(0)=$\sqrt{2}$即可判斷.

解答 解:f(x)=2${\;}^{\frac{1}{2}-x}$=$\frac{\sqrt{2}}{{2}^{x}}$,
∴f(x)是減函數(shù),且f(0)=$\sqrt{2}$>1,
故選:A.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性,函數(shù)值的計(jì)算,圖象的判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.定義f″(x)是y=f(x)的導(dǎo)函數(shù)y=f′(x)的導(dǎo)函數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.可以證明,任意三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”和對(duì)稱中心,且“拐點(diǎn)”就是其對(duì)稱中心,請(qǐng)你根據(jù)這一結(jié)論判斷下列命題:
①存在有兩個(gè)及兩個(gè)以上對(duì)稱中心的三次函數(shù);
②函數(shù)f(x)=x3-3x2-3x+5的對(duì)稱中心也是函數(shù)$y=tan\frac{π}{2}x$的一個(gè)對(duì)稱中心;
③存在三次函數(shù)h(x),方程h′(x)=0有實(shí)數(shù)解x0,且點(diǎn)(x0,h(x0))為函數(shù)y=h(x)的對(duì)稱中心;
④若函數(shù)$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-\frac{5}{12}$,則$g(\frac{1}{2016})+g(\frac{2}{2016})+g(\frac{3}{2016})+…+g(\frac{2015}{2016})$=-1007.5.
其中正確命題的序號(hào)為②③④(把所有正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.兩個(gè)等差數(shù)列{an},{bn},記數(shù)列{an},{bn}的前n項(xiàng)的和分別為Sn,Tn,且$\frac{{a}_{n}}{_{n}}$=$\frac{n}{n+1}$,則$\frac{{S}_{6}}{{T}_{3}}$=(  )
A.$\frac{65}{12}$B.$\frac{3}{7}$C.$\frac{3}{2}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=a2Sn+a1,其中a2≠0.
(Ⅰ)求證:{an}是首項(xiàng)為1的等比數(shù)列;
(Ⅱ)若數(shù)列{bn}的前n項(xiàng)和為Tn=n2+2n,求數(shù)列{an•bn}的前n項(xiàng)和;
(Ⅲ)若a2>-1,求證:Sn≤$\frac{n}{2}$(a1+an),并給出等號(hào)成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,若輸入的實(shí)數(shù)m是函數(shù)f(x)=-x2+x的最大值,則輸出的結(jié)果是(  )
A.18B.12C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法正確的是( 。
A.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題
B.“x=-1”是“x2+3x+2=0”的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若復(fù)數(shù)$\frac{2+ai}{1+i}$(a∈R)是純虛數(shù)(i是虛數(shù)單位),則a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),且x∈[0,1]時(shí),f(x)=2x+x-1.若方程f(x)=1在區(qū)間[-6,4]上有m個(gè)不同的根x1,x2,…,xm,則$\sum_{i=1}^{m}$xi=( 。
A.-6B.6C.0D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知變量x、y,滿足$\left\{\begin{array}{l}2x-y≤0\\ x-2y+3≥0\\ x≥0\end{array}\right.$,則z=1og2(2x+y+4)的最大值為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案