【題目】經(jīng)市場(chǎng)調(diào)查,某種商品在進(jìn)價(jià)基礎(chǔ)上每漲價(jià)1元,其銷(xiāo)售量就減少10個(gè),已知這種商品進(jìn)價(jià)為40/個(gè),若按50元一個(gè)售出時(shí)能賣(mài)出500個(gè).

1)請(qǐng)寫(xiě)出售價(jià)x)元與利潤(rùn)y元之間的函數(shù)關(guān)系式;

2)試計(jì)算當(dāng)售價(jià)定為多少元時(shí),獲得的利潤(rùn)最大,并求出最大利潤(rùn).

【答案】12)售價(jià)為70元時(shí),利潤(rùn)y元最大為9000元.

【解析】

1)可得該商品每個(gè)漲價(jià)()元,其銷(xiāo)售量將減少個(gè).即有利潤(rùn);(2)利用函數(shù)的解析式,結(jié)合二次函數(shù)的性質(zhì)運(yùn)用配方法,即可得到最大值及x的值.

解:(1)由售價(jià)為x元,可得該商品每個(gè)漲價(jià)元,

其銷(xiāo)售量將減少個(gè).

即有利潤(rùn)

=

=

2

=,

當(dāng)時(shí),y取得最大值,且為9000元.

故每個(gè)商品的售價(jià)為70元能夠使得利潤(rùn)y元最大,利潤(rùn)的最大值為9000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷(xiāo)售額和利潤(rùn)額資料如下表:

(1)畫(huà)出散點(diǎn)圖;

(2)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤(rùn)額y與銷(xiāo)售額x之間的線(xiàn)性回歸方程;

(3)若該公司還有一個(gè)零售店某月銷(xiāo)售額為10千萬(wàn)元,試估計(jì)它的利潤(rùn)額是多少?

(參考公式:,其中:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中, 分別為內(nèi)角的對(duì)邊,且

(1)求角的大;

(2)若的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),討論函數(shù)零點(diǎn)的個(gè)數(shù);

(2)若,當(dāng)=1時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)開(kāi)設(shè)甲、乙、丙三門(mén)選修課,學(xué)生是否選修哪門(mén)課互不影響,已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門(mén)的概率是0.88,用表示該學(xué)生選修的課程門(mén)數(shù)和沒(méi)有選修的課程門(mén)數(shù)的乘積.

1)記函數(shù)上的偶函數(shù)為事件,求事件的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資類(lèi)產(chǎn)品的收益與投資額成正比投資類(lèi)產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬(wàn)元時(shí)兩類(lèi)產(chǎn)品的收益分別為0125萬(wàn)元和05萬(wàn)元

1分別寫(xiě)出兩類(lèi)產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2該家庭有20萬(wàn)元資金全部用于理財(cái)投資,問(wèn):怎么分配資金能使投資獲得最大收益其最大收益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生喜歡校內(nèi)、校外開(kāi)展活動(dòng)的情況,某中學(xué)一課外活動(dòng)小組在學(xué)校高一年級(jí)進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問(wèn)卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱(chēng)為類(lèi)學(xué)生,低于60分的稱(chēng)為類(lèi)學(xué)生.

(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別與是否為類(lèi)學(xué)生有關(guān)系?

類(lèi)

類(lèi)

合計(jì)

110

50

合計(jì)

(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類(lèi)學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.

參考公式:,其中.

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為(萬(wàn)元),它們與投入資金(萬(wàn)元)的關(guān)系有如下公式:,,今將200萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于25萬(wàn)元.

(Ⅰ)設(shè)對(duì)乙種產(chǎn)品投入資金(萬(wàn)元),求總利潤(rùn)(萬(wàn)元)關(guān)于的函數(shù)關(guān)系式及其定義域;

(Ⅱ)如何分配投入資金,才能使總利潤(rùn)最大,并求出最大總利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中:

①若,滿(mǎn)足,則的最大值為4;

②若,則函數(shù)的最小值為3;

③若,滿(mǎn)足,則的最大值為

④若,滿(mǎn)足,則的最小值為2;

⑤函數(shù)的最小值為9.

正確的________.(把你認(rèn)為正確的序號(hào)全部寫(xiě)上)

查看答案和解析>>

同步練習(xí)冊(cè)答案