【題目】已知函數(shù)在點(diǎn)處的切線與y軸垂直.

1)若,求的單調(diào)區(qū)間;

2)若,成立,求a的取值范圍

【答案】(1)見(jiàn)解析;(2)

【解析】

1)令f1)=0求出b,再根據(jù)fx)的符號(hào)得出fx)的單調(diào)區(qū)間;

2)分類(lèi)討論,分別求出在(0,e)上的最小值,即可得出a的范圍.

(1),由題,

解得,由,得.

因?yàn)?/span>的定義域?yàn)?/span>,所以,

故當(dāng)時(shí),, 為增函數(shù),

當(dāng)時(shí),,為減函數(shù),

(2)由(1)知

所以

(ⅰ)若,則由(1)知,即恒成立

(ⅱ)若,則

故當(dāng)時(shí),為增函數(shù),

當(dāng)時(shí),,為減函數(shù),

,即恒成立

(ⅲ)若,則

故當(dāng)時(shí),,為增函數(shù),

當(dāng)時(shí),,為減函數(shù),

由題只需即可,即,解得

而由,且,

(ⅳ)若,則為增函數(shù),且,

所以,,不合題意,舍去;

(ⅴ)若,則,上都為增函數(shù),且

所以,不合題意,舍去;

綜上所述,a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】湖北省第二屆(荊州)園林博覽會(huì)于2019年9月28日至11月28日在荊州園博園舉辦,本屆園林博覽會(huì)以“輝煌荊楚,生態(tài)園博”為主題,展示荊州生態(tài)之美,文化之韻,吸引更多優(yōu)秀企業(yè)來(lái)荊投資,從而促進(jìn)荊州經(jīng)濟(jì)快速發(fā)展.在此博覽會(huì)期間,某公司帶來(lái)了一種智能設(shè)備供采購(gòu)商洽談采購(gòu),并決定大量投放荊州市場(chǎng).已知該種設(shè)備年固定研發(fā)成本為50萬(wàn)元,每生產(chǎn)一臺(tái)需另投入80元,設(shè)該公司一年內(nèi)生產(chǎn)該設(shè)備萬(wàn)臺(tái),且全部售完,且每萬(wàn)臺(tái)的銷(xiāo)售收入(萬(wàn)元)與年產(chǎn)量(萬(wàn)臺(tái))的函數(shù)關(guān)系式近似滿足

(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)臺(tái))的函數(shù)解析式.(年利潤(rùn)年銷(xiāo)售收入總成本).

(2)當(dāng)年產(chǎn)量為多少萬(wàn)臺(tái)時(shí),該公司獲得的利潤(rùn)最大?并求最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于兩個(gè)定義域相同的函數(shù)、,若存在實(shí)數(shù)、使,則稱(chēng)函數(shù)是由“基函數(shù)、”生成的.

1生成一個(gè)偶函數(shù),求的值;

2)若,)生成,求的取值范圍;

3)試?yán)谩盎瘮?shù)”生成一個(gè)函數(shù),使滿足下列條件:①是偶函數(shù);②有最小值1,請(qǐng)求出函數(shù)的解析式并進(jìn)一步研究該函數(shù)的單調(diào)性(無(wú)需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,、分別是、的中點(diǎn),將三角形沿折起,則下列說(shuō)法正確的是______________.

1)不論折至何位置(不在平面內(nèi)),都有平面;

2)不論折至何位置,都有;

3)不論折至何位置(不在平面內(nèi)),都有;

4)在折起過(guò)程中,一定存在某個(gè)位置,使.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)實(shí)數(shù),滿足,則下列不等式中不成立的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將邊長(zhǎng)為2的正沿著高折起,使,若折起后四點(diǎn)都在球的表面上,則球的表面積為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一項(xiàng)自“一帶一路”沿線20國(guó)青年參與的評(píng)選中“高鐵”、“支付寶”、“共享單車(chē)”和“網(wǎng)購(gòu)”被稱(chēng)作中國(guó)“新四大發(fā)明”,曾以古代“四大發(fā)明”推動(dòng)世界進(jìn)步的中國(guó),正再次以科技創(chuàng)新向世界展示自己的發(fā)展理念.某班假期分為四個(gè)社會(huì)實(shí)踐活動(dòng)小組,分別對(duì)“新四大發(fā)明”對(duì)人們生活的影響進(jìn)行調(diào)查.于開(kāi)學(xué)進(jìn)行交流報(bào)告會(huì).四個(gè)小組隨機(jī)排序,則“支付寶”小組和“網(wǎng)購(gòu)”小組不相鄰的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,底面,且為正三角形,,的中點(diǎn).

1)求證:直線平面

2)求三棱錐的體積;

3)三棱柱的頂點(diǎn)都在一個(gè)球面上,求該球的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案