設(shè)(1-
2
x
4=a0+a1
1
x
)+a2
1
x
2+a3
1
x
3+a4
1
x
4,則a1+a3的值是
 
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專(zhuān)題:二項(xiàng)式定理
分析:由二項(xiàng)式定理可得其展開(kāi)式,結(jié)合題意,分析可得a1、a3的值,計(jì)算可得答案.
解答: 解:由題意(1-
2
x
4=a0+a1
1
x
)+a2
1
x
2+a3
1
x
3+a4
1
x
4
可得a1+a3=-2C41-8C43=-40
故答案為:-40.
點(diǎn)評(píng):本題考查二項(xiàng)式定理的運(yùn)用,注意
2
x
1
x
的關(guān)系,再由二項(xiàng)式定理分析,求出a1、a3的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是( 。
A、向量
AB
的長(zhǎng)度與向量
BA
的長(zhǎng)度相等
B、兩個(gè)有共同起點(diǎn)且相等的向量,其終點(diǎn)可能不同
C、若非零向量
AB
CD
是共線向量,則A、B、C、D四點(diǎn)共線
D、若
a
平行
b
b
平行
c
,則
a
平行
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(logax)=
a(x2-1)
x(a2-1)
,(0<a<1)
(1)求f(x)的表達(dá)式,并判斷f(x)的奇偶性;
(2)判斷f(x)的單調(diào)性;
(3)對(duì)于f(x),當(dāng)x∈(-1,1)時(shí),恒有f(1-m)+f(1-m2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)設(shè)a>0,b>0,求證:a3+b3≥a2b+ab2;
(2)已知正數(shù)x、y滿(mǎn)足2x+y=1,求
1
x
+
1
y
的最小值及對(duì)應(yīng)的x、y值;
(3)已知實(shí)數(shù)x、y、z滿(mǎn)足x2+4y2+9z2=36,求x+y+z的最大值及對(duì)應(yīng)的x、y、z值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸交于點(diǎn)M(M異于原點(diǎn)),f(x)在M處的切線與直線x-y+10=0平行.
(Ⅰ)求f(2)的值;
(Ⅱ)已知非零實(shí)數(shù)t,求函數(shù)y=tg(x)-f(x)+x2,x∈[1,e]的最小值;
(Ⅲ)令F(x)=g(x)+g′(x),給定x1,x2∈(1,+∞),x1<x2,對(duì)于兩個(gè)大于1的正數(shù)α,β,存在實(shí)數(shù)m滿(mǎn)足:α=mx1+(1-m)x2,β=(1-m)x1+mx2,并且使得不等式|F(α)-F(β)|<|F(x1)-F(x2)|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x-y+
2
=0相切.過(guò)點(diǎn)(m,0)作圓的切線l交橢圓C于A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)將△OAB的面積表示為m的函數(shù),并求出面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間四邊形ABCD中,E、F、G分別在棱AB、BC、CD上,若AC∥面EFG,BD∥面EFG,
BE
AE
=
3
4
,
FG
BD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα與cosα是關(guān)于x的方程x2+px+q=0的兩根,求證:1+2q-p2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax(x<0)
(a-2)x+5a(x≥0)
滿(mǎn)足對(duì)任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0成立,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案