10.已知$\overrightarrow a=(-3,4),\overrightarrow b=(-2,1)$,則$\overrightarrow a$在$\overrightarrow b$上的投影為( 。
A.-2B.2C.$-2\sqrt{5}$D.$2\sqrt{5}$

分析 根據(jù)投影的定義$\overrightarrow a$在$\overrightarrow b$上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$.

解答 解:根據(jù)投影的定義可得:$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\frac{-3×(-2)+4×1}{\sqrt{(-2)^{2}+{1}^{2}}}$=$\frac{10}{\sqrt{5}}$=2$\sqrt{5}$,
故選:D

點評 本題主要考查向量投影的定義及求解的方法,公式與定義兩者要靈活運用.解答關鍵在于要求熟練應用公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)$y=\frac{1}{x}$的圖象向右平移2個單位,再向下平移1個單位后的函數(shù)解析式是$y=\frac{1}{x-2}-1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=x(x+1)(x+2)…(x+100),則f'(0)=100!.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知$cosθ=-\frac{3}{5}$,$tanθ=\frac{4}{3}$,則角θ的終邊落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)化簡f(α)=$\frac{{sin(\frac{π}{2}+α)+sin(-π-α)}}{{3cos(2π-α)+cos(\frac{3π}{2}-α)}}$; 
(2)若tanα=1,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.現(xiàn)有1名女教師和2名男教師參加說題比賽,共有2道備選題目,若每位選手從中有放回地隨機選出一道題進行說題,其中恰有一男一女抽到同一道題的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.下列命題:
①命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
②“x=1”是“x2-3x+2=0”的充分不必要條件
③若p∧q為假命題,則p,q均為假命題
④對于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0,
說法錯誤的是③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.圓心在直線5x-3y=8上,又與兩坐標軸相切的圓的方程是(x-4)2+(y-4)2=16和(x-1)2+(y+1)2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),公比為q,且滿足:a1=3,b1=1,b2+S2=12,S2=b2q.
(1)求an與bn;
(2)設cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若數(shù)列{cn}是遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

同步練習冊答案