【題目】設(shè)p:實(shí)數(shù)x滿足x2+4ax+3a2<0,其中a≠0,命題q:實(shí)數(shù)x滿足 .
(1)若a=﹣1,且p∨q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:若a=﹣1,
當(dāng)p真時(shí)有1<x<3;
又q真時(shí)有﹣6≤x<﹣3或2<x≤12
由p∨q為真知,實(shí)數(shù)x的取值范圍是[﹣6,﹣3)∪(1,12]
(2)解:由p是q的必要不充分條件知,q是p的必要不充分條件,
∴p是q的充分不必要條件.
若a>0,當(dāng)p真時(shí)有﹣3a<x<﹣a;
∴﹣3a≥﹣6且﹣a≤﹣3;
無(wú)解;
若a<0,當(dāng)p真時(shí)有﹣a<x<﹣3a;
∴﹣a≥2且﹣3a≤12;
∴﹣4≤a≤﹣2
故實(shí)數(shù)a的取值范圍是﹣4≤a≤﹣2
【解析】(1)若p∨q為真,則命題p,q存在真命題,分析求出兩個(gè)命題為真時(shí)x的取值范圍,進(jìn)而可得答案;(2)若¬p是¬q的必要不充分條件,則q是p的必要不充分條件,即p是q的充分不必要條件,進(jìn)而可得答案;
【考點(diǎn)精析】利用復(fù)合命題的真假和命題的真假判斷與應(yīng)用對(duì)題目進(jìn)行判斷即可得到答案,需要熟知“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真;兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,1+ = .
(1)求A的大;
(2)若△ABC為銳角三角形,求函數(shù)y=2sin2B﹣2cosBcosC的取值范圍;
(3)現(xiàn)在給出下列三個(gè)條件:①a=1;②2c﹣( +1)b=0;③B=45°,試從中再選擇兩個(gè)條件,以確定△ABC,求出所確定的△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某位籃球運(yùn)動(dòng)員8場(chǎng)比賽得分的莖葉圖,其中一個(gè)數(shù)據(jù)染上污漬用x代替,則這位運(yùn)動(dòng)員這8場(chǎng)比賽的得分平均數(shù)不小于得分中位數(shù)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知B=45°,D是BC邊上的一點(diǎn),AD=4,AC=2 ,DC=2
(1)求cos∠ADC
(2)求AB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)A(﹣6,10)且與直線l:x+3y+16=0相切于點(diǎn)B(2,﹣6)的圓的方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列一段材料,然后解答問(wèn)題:對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示“不超過(guò)x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),[x]就是x,當(dāng)x不是整數(shù)時(shí),[x]是點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),這個(gè)函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù).如[﹣2]=﹣2,[﹣1.5]=﹣2,[2.5]=2.求[log2]+[log2]+[log2]+[log21]+[log22]+[log23]+[log24]的值為( 。
A.-1
B.-2
C.0
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣1)2+(y﹣2)2=4.
(1)求直線2x﹣y+4=0被圓C所截得的弦長(zhǎng);
(2)求過(guò)點(diǎn)M(3,1)的圓C的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若先將函數(shù)y= sin(x﹣ )+cos(x﹣ )圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的 倍,再將所得圖象向左平移 個(gè)單位,所得函數(shù)圖象的一條對(duì)稱軸的方程是( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com