已知平面α⊥平面β,α∩β=l,點(diǎn)A∈α,A∉l,直線AB∥l,直線AC⊥l,直線m∥α,m∥β,則下列四種位置關(guān)系中,不一定成立的是(  )

A.AB∥m B.AC⊥m

C.AB∥β D.AC⊥β

 

D

【解析】因?yàn)閙∥α,m∥β,α∩β=l,所以m∥l.

因?yàn)锳B∥l,所以AB∥m,故A一定正確.

因?yàn)锳C⊥l,m∥l,所以AC⊥m,從而B一定正確.

因?yàn)锳B∥l,l?β,AB?β.

所以AB∥β.故C也正確.

因?yàn)锳C⊥l,當(dāng)點(diǎn)C在平面α內(nèi)時,AC⊥β成立,當(dāng)點(diǎn)C不在平面α內(nèi)時,AC⊥β不成立,故D不一定成立.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第七章 立體幾何(解析版) 題型:填空題

如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面四個結(jié)論:

①直線BE與直線CF異面;

②直線BE與直線AF異面;

③直線EF∥平面PBC;

④平面BCE⊥平面PAD.

其中正確的有__________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:填空題

三角形ABC中,已知···=-6,且角C為直角,則角C的對邊c的長為__________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2,數(shù)列{bn}滿足b1=1,且bn+1=bn+2.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)設(shè)cn=an-bn,求數(shù)列{cn}的前2n項(xiàng)和T2n.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:填空題

關(guān)于直線m,n和平面α,β有以下四個命題:

①若m∥α,n∥β,α∥β,則m∥n;

②若m∥n,m?α,n⊥β,則α⊥β;

③若α∩β=m,m∥n,則n∥α且n∥β;

④若m⊥n,α∩β=m,則n⊥α或n⊥β.

其中假命題的序號是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

已知等比數(shù)列{an},若存在兩項(xiàng)am,an使得am·an=a32,則的最小值為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:解答題

為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:

休閑方式

性別

看電視

看書

合計

10

50

60

10

10

20

合計

20

60

80

 

(1)將此樣本的頻率估計為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望;

(2)根據(jù)以上數(shù)據(jù),我們能否在犯錯誤的概率不超過0.01的前提下,認(rèn)為“在20:00-22:00時間段居民的休閑方式與性別有關(guān)系”?

參考公式:K2=,其中n=a+b+c+d.

參考數(shù)據(jù):

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:解答題

(2013·佛山模擬)在平面直角坐標(biāo)系xOy中,以O(shè)x為始邊,角α的終邊與單位圓O的交點(diǎn)B在第一象限,已知A(-1,3).

(1)若OA⊥OB,求tan α的值;

(2)若B點(diǎn)橫坐標(biāo)為,求S△AOB.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年吉林省延邊州高考復(fù)習(xí)質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

為迎接2013年“兩會”(全國人大3月5日-3月18日、全國政協(xié)3月3日-3月14日)的勝利召開,某機(jī)構(gòu)舉辦猜獎活動,參與者需先后回答兩道選擇題,問題A有四個選項(xiàng),問題B有五個選項(xiàng),但都只有一個選項(xiàng)是正確的,正確回答問題A可獲獎金元,正確回答問題B可獲獎金元.活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答錯誤,則該參與者猜獎活動中止.假設(shè)一個參與者在回答問題前,對這兩個問題都很陌生,試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.

 

查看答案和解析>>

同步練習(xí)冊答案