10.已知函數(shù)f(x)=x3-3x.
(Ⅰ)求函數(shù)f(x)在[-2,1]上的最大值和最小值.
(Ⅱ)過(guò)點(diǎn)P(2,-6)作曲線y=f(x)的切線,求此切線的方程.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可;
(Ⅱ)欲求出切線方程,只須求出其斜率即可,故先設(shè)切點(diǎn)坐標(biāo)為(t,t3-3t),利用導(dǎo)數(shù)求出在x=t處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問(wèn)題解決.

解答 解:(Ⅰ)f(x)=x3-3x,
f′(x)=3x2-3=3(x+1)(x-1),
令f′(x)>0,解得:x>1或x<-1,
令f′(x)<0,解得:-1<x<1,
故f(x)在[-2,-1)遞增,在(-1,1]遞減,
而f(-2)=-2,f(-1)=2,f(1)=-2,
∴f(x)的最小值是-2,
f(x)的最大值是2;
(Ⅱ)∵f′(x)=3x2-3,
設(shè)切點(diǎn)坐標(biāo)為(t,t3-3t),
則切線方程為y-(t3-3t)=3(t2-1)(x-t),
∵切線過(guò)點(diǎn)P(2,-6),∴-6-(t3-3t)=3(t2-1)(2-t),
化簡(jiǎn)得t3-3t2=0,∴t=0或t=3.
∴切線的方程:3x+y=0或24x-y-54=0.

點(diǎn)評(píng) 本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}sin(πx)(x∈[{-2,0}])\\{3^{-x}}+1\;(x>0)\end{array}\right.$,則y=f[f(x)]-4的零點(diǎn)為( 。
A.$-\frac{π}{2}$B.$\frac{1}{2}$C.$-\frac{3}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)f(z)=$\overline{z}$,且z1=1+5i,z2=-3+3i,則$f(\overline{{z_1}-{z_2}})$=( 。
A.4+2iB.4+3iC.4-2iD.4-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在等比數(shù)列{an}中,a1=1,a5=16,則公比q為( 。
A.±2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)f(x)是R上的可導(dǎo)函數(shù),且f′(x)≥-f(x),f(0)=1,f(2)=$\frac{1}{{e}^{2}}$.則f(1)的值為$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.復(fù)數(shù)${(\frac{{1-\sqrt{3}i}}{i})^2}$=( 。
A.-3+4iB.2+2$\sqrt{3}$iC.3-4D.-3-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=1-3sin2x的最小正周期為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若x=-1是函數(shù)f(x)=x(x-a)2的極小值點(diǎn),則a=( 。
A.0B.-1C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.對(duì)于兩個(gè)復(fù)數(shù)$α=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,$β=-\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$,有下列四個(gè)結(jié)論:①αβ=1;②$\frac{α}{β}=1$;③$\frac{|α|}{|β|}=1$;④α33=2,其中正確的結(jié)論的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案