在數(shù)列中,如果存在常數(shù),使得對(duì)于任意正整數(shù)均成立,那么就稱(chēng)數(shù)列為周期數(shù)列,其中叫做數(shù)列的周期. 已知數(shù)列滿(mǎn)足,若,當(dāng)數(shù)列的周期為時(shí),則數(shù)列的前2012項(xiàng)的和為 (    )
A.1339 +aB.1341+aC.671 +aD.672+a
B

試題分析:先要弄清題意中所說(shuō)的周期數(shù)列的含義,然后利用這個(gè)定義,針對(duì)題目中的數(shù)列的周期,先求x3,再前三項(xiàng)和s3,最后求s2012
∵xn+1=|xn-xn-1|(n≥2,n∈N*),且x1=1,x2=a(a≤1,a≠0),∴x3=|x2-x1|=1-a,∴該數(shù)列的前3項(xiàng)的和s3=1+a+(1-a)=2∵數(shù)列{xn}周期為3,∴該數(shù)列的前2012項(xiàng)的和s2012=s2010+x1+x2==1341+a,選B.
點(diǎn)評(píng):解決該試題的關(guān)鍵在于應(yīng)由題意先求一個(gè)周期的和,再求該數(shù)列的前n項(xiàng)和sn
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程的兩根,且
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和
(3)設(shè)函數(shù)對(duì)任意的都成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
已知數(shù)列是公差不為零的等差數(shù)列,=1,且,,成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;    (Ⅱ)求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

成等比數(shù)列,其中 則(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列滿(mǎn)足,,…,是首項(xiàng)為,公比為的等比數(shù)列,那么(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

成等比"是""的      條件(   )
A.充要條件  B.充分不必要C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是公比為的等比數(shù)列,若成等差數(shù)列,則實(shí)數(shù)="_________"

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等比數(shù)列中,,則=          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若等比數(shù)列的前項(xiàng)和,則 =    (    )
A.0B.-1C.1D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案