5.如圖,已知平面ABC⊥平面ACDE,且△ABC為等腰直角三角形,AC=BC=4,等腰梯形ACDE中,AC∥DE且AE=DE=2.
(Ⅰ)求證:平面ABE⊥平面BCE;
(Ⅱ)求二面角C-BE-D的正弦值.

分析 (Ⅰ)推導出AE⊥EC,從而BC⊥平面ACDE,進而BC⊥AE,AE⊥平面BCE,由此能證明平面ABE⊥平面BCE.
(Ⅱ)取AC的中點M,連結DM交EC于點F,過點F作FH⊥BE于點H,連結DH,則∠DHF為二面角C-BE-D的平面角,由此能求出二面角C-BE-D的正弦值.

解答 證明:(Ⅰ)如圖1,∵AC=BC=4,等腰梯形ACDE中,AC∥DE且AE=DE=2,
∴∠EAC=60°,∴AE⊥EC,
∵平面ABC⊥平面ACDE,交線為AC,∴BC⊥平面ACDE,
∴BC⊥AE,∴AE⊥平面BCE,
∵AE?平面ABE,∴平面ABE⊥平面BCE.
解:(Ⅱ)如圖2,取AC的中點M,連結DM交EC于點F,
在等腰梯形ACDE中,由已知得DF∥AE,
由(Ⅰ)知AE⊥平面BCE,∴DF⊥平面BCE,
過點F作FH⊥BE于點H,連結DH,則DH⊥BE,
∴∠DHF為二面角C-BE-D的平面角,
∵DE=2,EB=$\sqrt{3+9+16}$=2$\sqrt{7}$,BD=$\sqrt{3+1+16}$=2$\sqrt{5}$,
又DE=2,∴由余弦定理得cos∠EBD=$\frac{28+20-4}{2×2\sqrt{7}×2\sqrt{5}}$=$\frac{11}{2\sqrt{35}}$,∴sin∠EBD=$\frac{\sqrt{19}}{2\sqrt{35}}$,
∴DH=DBsin$∠EBD=\frac{\sqrt{19}}{\sqrt{7}}$,
又在等腰△CDE中,由題意得DF=1,
∴在Rt△DFH中,sin$∠DHF=\frac{\sqrt{7}}{\sqrt{19}}$=$\frac{\sqrt{133}}{19}$,
∴二面角C-BE-D的正弦值為$\frac{\sqrt{133}}{19}$.

點評 本題考查面面垂直的證明,考查二面角的正弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2016-2017學年河北正定中學高二上月考一數(shù)學(文)試卷(解析版) 題型:選擇題

為了了解某學校1200名高中男生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況.根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,據(jù)此估計該校高中男生體重在的人數(shù)為( )

A.360 B.336 C.300 D.280

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,已知DC⊥平面ABC,BE∥CD,是正三角形,AC=CD=2BE,且點M是AD上的一個動點.
(1)若點M是AD的中點,求證:ME∥平面ABC;
(2)求證:平面ADE⊥平面ACD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,已知拋物線C:y2=2px(p>0)的準線為l,焦點為F,圓M的圓心在x軸的正半軸上,且與y軸相切,過原點作傾斜角為$\frac{π}{3}$的直線t,交l于點A,交圓M于點B,且|AO|=|OB|=2.
( I ) 求圓M和拋物線C的方程;
(Ⅱ) 已知點N是x軸正半軸上的一個定點,設G,H是拋物線上異于原點O的兩個不同點,且$\overrightarrow{GN}$∥$\overrightarrow{NH}$,△GOH面積的最小值為16.問以動線段GH為直徑的圓是否過原點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在一個幾何體的三視圖中,正視圖與俯視圖如右圖所示,則相應的側視圖可以為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}$|=1,$\overrightarrow a•\overrightarrow b=m$,則$|{\overrightarrow a+t\overrightarrow b}|({t∈R})$的最小值為(  )
A.2B.$\sqrt{1+{m^2}}$C.1D.$\sqrt{1-{m^2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若函數(shù)f(x)是定義域D內(nèi)的某個區(qū)間I上的增函數(shù),且$F(x)=\frac{f(x)}{x}$在I上是減函數(shù),則稱y=f(x)是I上的“單反減函數(shù)”,已知$f(x)=lnx,g(x)=2x+\frac{2}{x}+alnx(a∈R)$(1)判斷f(x)在(0,1]上不是(填是或不是)“單反減函數(shù)”;  (2)若g(x)是[1,+∞)上的“單反減函數(shù)”,則實數(shù)a的取值范圍為[0,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.袋中裝有形狀、大小完全相同的五個乒乓球,分別標有數(shù)字1,2,3,4,5.現(xiàn)每次從中任意抽取一個,取出后不再放回.
(Ⅰ)若抽取三次,求前兩個乒乓球所標數(shù)字之和為偶數(shù)的條件下,第三個乒乓球為奇數(shù)的概率;
(Ⅱ)若不斷抽取,直至取出標有偶數(shù)的乒乓球為止,設抽取次數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖(1)所示,以線段BD為直徑的圓經(jīng)過A,C兩點,且AB=BC=1,BD=2,延長DA,CB交于點P,將△PAB沿AB折起,使點P至點P′位置得到如圖2所示的空間圖形,其中點P′在平面ABCD內(nèi)的射影恰為線段AD的中點Q,若線段P′B,P′C的中點分別為E,F(xiàn).
(1)證明:A,D,E,F(xiàn)四點不共面;
(2)求幾何體P′ADE的體積.

查看答案和解析>>

同步練習冊答案