7.若復(fù)數(shù)z滿足z+2-3i=-1+5i,則$\overline z$=( 。
A.3-8iB.-3-8iC.3+8iD.-3+8i

分析 直接由已知得到z,再由共軛復(fù)數(shù)的概念得答案.

解答 解:由z+2-3i=-1+5i,得z=-1+5i-2+3i=-3+8i,
∴$\overline{z}=-3-8i$,
故選:B.

點評 本題考查復(fù)數(shù)代數(shù)形式的加減運算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.橢圓滿足這樣的光學(xué)性質(zhì):從橢圓的一個焦點發(fā)射的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點.現(xiàn)有一個水平放置的橢圓形臺球盤,滿足方程$\frac{x^2}{64}+\frac{y^2}{28}=1$,點A,B是它的兩個焦點.當(dāng)靜止的小球從點A開始出發(fā),沿直線運動,經(jīng)橢圓壁反射后再回到點A時,此時小球經(jīng)過的路程可能是( 。
A.32或4或$16-4\sqrt{7}$B.$16+4\sqrt{7}$或28或$16-4\sqrt{7}$
C.28或4或$16+4\sqrt{7}$D.32或28或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.頂點在原點,對稱軸是坐標(biāo)軸,且經(jīng)過點(4,-2)的拋物線方程是( 。
A.y2=xB.x2=-8yC.y2=-x或x2=8yD.y2=x或x2=-8y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x3+3ax2+(3-6a)x+12a-3 (a∈R)
(1)證明:曲線y=f(x)在x=0處的切線過點(2,3);
(2)若f(x)在x=x0 處取得極小值,x0∈(1,3)求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.由曲線y=$\sqrt{x}$,直線x=1以及坐標(biāo)軸所圍成的平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l:$\left\{\begin{array}{l}{x=1+t}\\{y=-\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))
(1)寫出直線l和曲線C的普通方程;
(2)求直線l被曲線C截得的線段中點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx,h(x)=ax(a∈R).
(I)函數(shù)f(x)與h(x)的圖象無公共點,試求實數(shù)a的取值范圍;
(Ⅱ)是否存在實數(shù)m,使得對任意的x∈($\frac{1}{2}$,+∞),都有函數(shù)y=f(x)+$\frac{m}{x}$的圖象在g(x)=$\frac{{e}^{x}}{x}$的圖象的下方?若存在,請求出最大整數(shù)m的值;若不存在,請說理由.
(參考數(shù)據(jù):ln2=0.6931,ln3=1.0986,$\sqrt{e}$=1.6487,$\root{3}{e}$=1.3956).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=mxlnx-x,m∈[0,+∞),x∈(1,+∞)
(Ⅰ)若關(guān)于x的不等式f(x)>-1恒成立,求實數(shù)m的取值范圍;
(Ⅱ)當(dāng)x1>x2>1時,比較x${\;}_{1}^{{x}_{2}-1}$,x${\;}_{2}^{{x}_{1}-1}$的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-2x+alnx(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個極值點x1,x2(x1<x2),且不等式f(x1)≥mx2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案