【題目】設(shè)f(x)=2sin(180°﹣x)+cos(﹣x)﹣sin(450°﹣x)+cos(90°+x).
(1)若f(α)= α∈(0°,180°),求tanα;
(2)若f(α)=2sinα﹣cosα+ ,求sinαcosα的值.

【答案】
(1)解:∵f(x)=2sin(180°﹣x)+cos(﹣x)﹣sin(450°﹣x)+cos(90°+x)

=2sinx+cosx﹣cosx﹣sinx=sinx,

f(α)= ,α∈(0°,180°),

∴f(α)=sinα= ,∴cosα=± ,

∴tanα= =


(2)解:∵f(α)=2sinα﹣cosα+ =sinα,

∴sinα﹣cosα=﹣ ,

∴(sinα﹣cosα)2=1﹣2sinαcosα= ,

解得sinαcosα=


【解析】(1)推導(dǎo)出f(x)=sinx,從而f(α)=sinα= ,由此能求出tanα.(2)推導(dǎo)出sinα﹣cosα=﹣ ,由此能求出sinαcosα.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M的圓心在直線x﹣2y+4=0上,且與x軸交于兩點(diǎn)A(﹣5,0),B(1,0). (Ⅰ)求圓M的方程;
(Ⅱ)求過(guò)點(diǎn)C(1,2)的圓M的切線方程;
(Ⅲ)已知D(﹣3,4),點(diǎn)P在圓M上運(yùn)動(dòng),求以AD,AP為一組鄰邊的平行四邊形的另一個(gè)頂點(diǎn)Q軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額的商品后即可參加抽獎(jiǎng),抽獎(jiǎng)有兩種方案可供選擇. 方案一:從裝有4個(gè)紅球和2個(gè)白球的不透明箱中,隨機(jī)摸出2個(gè)球,若摸出的2個(gè)球都是紅球則中獎(jiǎng),否則不中獎(jiǎng);
方案二:擲2顆骰子,如果出現(xiàn)的點(diǎn)數(shù)至少有一個(gè)為4則中獎(jiǎng),否則不中獎(jiǎng).(注:骰子(或球)的大小、形狀、質(zhì)地均相同)
(Ⅰ)有顧客認(rèn)為,在方案一種,箱子中的紅球個(gè)數(shù)比白球個(gè)數(shù)多,所以中獎(jiǎng)的概率大于 .你認(rèn)為正確嗎?請(qǐng)說(shuō)明理由;
(Ⅱ)如果是你參加抽獎(jiǎng),你會(huì)選擇哪種方案?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線E的中心為原點(diǎn),P(3,0)是E的焦點(diǎn),過(guò)P的直線l與E相交于A,B兩點(diǎn),且AB的中點(diǎn)為N(﹣12,﹣15),則E的方程式為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,PD⊥底面ABCD,點(diǎn)M、N分別是棱AB、CD的中點(diǎn).
(1)證明:BN⊥平面PCD;
(2)在線段PC上是否存在點(diǎn)H,使得MH與平面PCD所成最大角的正切值為 ,若存在,請(qǐng)求出H點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)環(huán)保部通報(bào),2016年10月24日起,京津冀周邊霧霾又起,為此,環(huán)保部及時(shí)提出防控建議,推動(dòng)應(yīng)對(duì)工作由過(guò)去“大水漫灌式”的減排方式轉(zhuǎn)變?yōu)閷?shí)現(xiàn)精確打擊.某燃煤企業(yè)為提高應(yīng)急聯(lián)動(dòng)的同步性,新購(gòu)置并安裝了先進(jìn)的廢氣處理設(shè)備,使產(chǎn)生的廢氣經(jīng)過(guò)過(guò)濾后排放,以降低對(duì)大氣環(huán)境的污染,已知過(guò)濾后廢氣的污染物數(shù)量N(單位:mg/L)與過(guò)濾時(shí)間t(單位:小時(shí))間的關(guān)系為N(t)=N0e﹣λt(N0 , λ均為非零常數(shù),e為自然對(duì)數(shù)的底數(shù))其中N0為t=0時(shí)的污染物數(shù)量,若經(jīng)過(guò)5小時(shí)過(guò)濾后污染物數(shù)量為 N0
(1)求常數(shù)λ的值;
(2)試計(jì)算污染物減少到最初的10%至少需要多少時(shí)間?(精確到1小時(shí)) 參考數(shù)據(jù):ln3≈1.10,ln5≈1.61,ln10≈2.30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)y=sin(x﹣ )的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將所得的圖象向左平移 個(gè)單位,得到的圖象對(duì)應(yīng)的解析式是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)求證PA∥平面EDB;
(2)求二面角C﹣PB﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù) 的圖象,只需將函數(shù)y=sin2x的圖象上每一點(diǎn)( )
A.向左平移 個(gè)單位長(zhǎng)度
B.向左平移 個(gè)單位長(zhǎng)度
C.向右平移 個(gè)單位長(zhǎng)度
D.向右平移 個(gè)單位長(zhǎng)度

查看答案和解析>>

同步練習(xí)冊(cè)答案