已知P,Q為拋物線x2=2y上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,-2,過P,Q分別作拋物線的切線,兩切線交于點(diǎn)A,則點(diǎn)A的縱坐標(biāo)為________.
-4
因?yàn)閥=x2,所以y′=x,易知P(4,8),Q(-2,2),所以在P、Q兩點(diǎn)處切線的斜率的值為4或-2.
∴切線的方程為l1:4x-y-8=0,l2:2x+y+2=0,
將這兩個(gè)方程聯(lián)立方程組求得y=-4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,l與雙曲線
x2
a2
-y2=1(a>0)
交于A,B兩點(diǎn),若△FAB為直角三角形,則雙曲線的離心率是(  )
A.
3
B.
6
C.2D.
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線
y2
25
-
x2
9
=1
,F(xiàn)1、F2為焦點(diǎn).
(Ⅰ)若P為雙曲線
y2
25
-
x2
9
=1
上一點(diǎn),且∠F1PF2=60°,求△F1PF2的面積;
(Ⅱ)若雙曲線C與雙曲線
y2
25
-
x2
9
=1
有相同的漸近線,且過點(diǎn)M(-3
3
,5)
,求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線C: y2 =2px(p>0)的準(zhǔn)線L,過M(l,0)且斜率為的直線與L相交于A,與C的一個(gè)交點(diǎn)為B,若,則p=____      。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)動(dòng)圓與定圓相外切,且與定直線相切,則此動(dòng)圓的圓心的軌跡方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)M是拋物線上的一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A在圓C:上,則的最小值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)P到直線x=-1的距離比它到點(diǎn)(2,0)的距離小1,則點(diǎn)P的軌跡為(  )
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,,,為兩個(gè)定點(diǎn),的一條切線,若過兩點(diǎn)的拋物線以直線為準(zhǔn)線,則該拋物線的焦點(diǎn)的軌跡是(  )
A.圓B.雙曲線C.橢圓D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過拋物線C:上的點(diǎn)M分別向C的準(zhǔn)線和x軸作垂線,兩條垂線及C的準(zhǔn)線和x軸圍成邊長(zhǎng)為4的正方形,點(diǎn)M在第一象限.
(1)求拋物線C的方程及點(diǎn)M的坐標(biāo);
(2)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與拋物線C交于A,B兩點(diǎn),如果點(diǎn)M在直線AB的上方,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案