6.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=1,b=$\sqrt{3}$,A=$\frac{π}{6}$,則角B等于( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{6}$或$\frac{5π}{6}$

分析 由題意和正弦定理求出sinB的值,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出角B.

解答 解:∵a=1,b=$\sqrt{3}$,A=$\frac{π}{6}$,
∴由正弦定理得,$\frac{a}{sinA}=\frac{sinB}$,
則sinB=$\frac{b•sinA}{a}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
又∵0<B<π,b>a,∴B=$\frac{π}{3}$或$\frac{2π}{3}$,
故選C.

點評 本題考查正弦定理,以及特殊角的三角函數(shù)值的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=xlnx+2,g(x)=x2-mx.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x0∈[$\frac{1}{e}$,e]使得mf′(x0)+g(x0)≥2x0+m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)h(x)=lnx+$\frac{1}{x}$.
(1)函數(shù)g(x)=h(2x+m),若x=1是g(x)的極值點,求m的值并討論g(x)的單調(diào)性;
(2)函數(shù)φ(x)=h(x)-$\frac{1}{x}$+ax2-2x有兩個不同的極值點,其極小值為M,試比較2M與-3的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.執(zhí)行如圖程序語句,輸入a=2cos$\frac{2017π}{3}$,b=2tan$\frac{2017π}{4}$,則輸出y的值是( 。
A.3B.4C.6D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某中學數(shù)學老師分別用兩種不同教學方式對入學數(shù)學平均分和優(yōu)秀率都相同的甲、乙兩個高一新班(人數(shù)均為20人)進行教學(兩班的學生學習)(兩班的學生學習數(shù)學勤奮程度和自覺性都一樣).如圖所示莖葉圖如.

(1)現(xiàn)從乙班數(shù)學成績不低于80分的同學中隨機抽取兩名同學,求至少有一名成績?yōu)?0分的同學被抽中的概率;
(2)學校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關(guān)”.
甲班乙班合計
優(yōu)秀14822
不優(yōu)秀61218
合計202040
附參考公式及數(shù)據(jù):
P(x2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.7910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)復數(shù)z滿足(1+i)z=|1-i|(i為虛數(shù)單位),則$\overline z$=( 。
A.1+iB.1-iC.$\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an}中,a1=1,其前n項和為Sn,且滿足2Sn=(n+1)an,(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)記bn=3n-λan2,若數(shù)列{bn}為遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是76cm2,體積是40cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD=$\sqrt{3}$,三棱錐P-ABD的體積V=$\frac{{\sqrt{3}}}{4}$,求二面角A-PB-D的正切值.

查看答案和解析>>

同步練習冊答案