5.在△ABC中,cos2B>cos2A是A>B的( 。
A.充分條件B.充分不必要條件C.充要條件D.必要不充分條件

分析 根據(jù)在三角形中,大角對大邊得到a>b,利用正弦定理得到A>B,根據(jù)三角形中角的正弦值一定是正數(shù)得到sin2A>sin2B,根據(jù)不等式的性質(zhì)與同角的三角函數(shù)的關(guān)系得到cos2B>cos2A,得到結(jié)論.

解答 解:∵在△ABC中,A>B,
∴根據(jù)大角對大邊得到a>b,
∵$\frac{a}{sinA}$=$\frac{sinB}$,∴sinA>sinB
根據(jù)兩個角的正弦值都是正數(shù)得到sin2A>sin2B,
∴1-cos2A>1-cos2B
∴cos2A<cos2B
∴cos2B>cos2A是A>B的充要條件.
故選:C.

點評 本題考查三角形的正弦定理,同一個三角形中大邊對大角,考查同角的三角函數(shù)之間的關(guān)系,本題解題的關(guān)鍵是對于邊角關(guān)系的互化,注意初中所學(xué)的三角形基本知識的應(yīng)用,本題是一個基礎(chǔ)題.本題考查三角形的一些結(jié)論的應(yīng)用:大邊對大角、正弦定理、余弦定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若sinα=$\frac{{\sqrt{5}}}{5}$,sinβ=$\frac{{\sqrt{10}}}{10}$,其α,β為銳角,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.△ABC中.設(shè)$\overrightarrow{CB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow$=-$\sqrt{3}$,則c=$\sqrt{7-2\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=log0.2(x2+2x-3).
(1)求f(x)的定義域;
(2)若f(x)≥log0.2(x2-4),求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某消防員在一次執(zhí)行任務(wù)過程中,遇到突發(fā)事件,需從10m長的直桿頂端從靜止開始勻加速下滑,加速度大小a1=8m/s2.然后立即勻減速下滑,減速時的最大加速度a2=4m/s2.若落地時的速度不允許超過4m/s,把消防員看成質(zhì)點,求該消防員下滑全過程的最短時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知i是虛數(shù)單位,若|a-i|=$\sqrt{3}$a,則實數(shù)a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=(ax+1)e-x(a∈R)
(Ⅰ)當(dāng)a>0時,求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)對任意x∈[0,+∞),f(x)≤x+1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知0<x1<x2,求證:$\frac{{x}_{1}+1}{{x}_{2}+1}>\frac{{x}_{1}}{{x}_{2}}$;
(2)已知f(x)=lg(x+1)-$\frac{1}{2}$log3x,求證:f(x)在定義域內(nèi)是單調(diào)遞減函數(shù);
(3)在(2)的條件下,求集合M={n|f(n2-214n-1998)≥0,n∈Z}的子集個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知tanα=2,求:
(1)$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{tan(-α-π)sin(-π-α)}$;
(2)2sin2α-3sinαcosα-1.

查看答案和解析>>

同步練習(xí)冊答案