分析 (1)利用二倍角和輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,
(2)$x∈[\frac{π}{4},\frac{π}{2}]$上時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值.
解答 解:函數(shù)$f(x)=2sinxcosx-\sqrt{3}cos2x+1$(x∈R).
化簡可得:$f(x)=sin2x-\sqrt{3}cos2x+1$=$2sin(2x-\frac{π}{3})+1$.
∴f(x)的最小正周期T=$\frac{2π}{2}=π$.
(2)$x∈[\frac{π}{4},\frac{π}{2}]$上時(shí),
易得$\frac{π}{6}≤2x-\frac{π}{3}≤\frac{2}{3}π$,
于是$\frac{1}{2}≤sin(2x-\frac{π}{3})≤1$,
即2≤f(x)≤3,
∴當(dāng)$x=\frac{5π}{12}$時(shí),f(x)max=3;
當(dāng)$x=\frac{π}{4}$時(shí),f(x)min=2.
故得f(x)在區(qū)間$x∈[\frac{π}{4},\frac{π}{2}]$上的最大值為3,最小值為2.
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | 8 | C. | 4 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | λ≤3 | B. | λ≤4 | C. | 2≤λ≤3 | D. | 3≤λ≤4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充要條件 | ||
C. | 充分不必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{16}{3}π$ | B. | 16π | C. | $\frac{32}{3}π$ | D. | 32π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com