【題目】如圖所示,在直角梯形中,,、分別是、上的點(diǎn),,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過(guò)程中,則下列表述:
①平面;
②四點(diǎn)、、、可能共面;
③若,則平面平面;
④平面與平面可能垂直.其中正確的是__________.
【答案】①③
【解析】
連接、交于點(diǎn),取的中點(diǎn),證明四邊形為平行四邊形,可判斷命題①的正誤;利用線面平行的性質(zhì)定理和空間平行線的傳遞性可判斷命題②的正誤;連接,證明出,結(jié)合線面垂直和面面垂直的判定定理可判斷命題③的正誤;假設(shè)平面與平面垂直,利用面面垂直的性質(zhì)定理可判斷命題④的正誤.綜合可得出結(jié)論.
對(duì)于命題①,連接、交于點(diǎn),取的中點(diǎn)、,連接、,如下圖所示:
則且,四邊形是矩形,且,為的中點(diǎn),
為的中點(diǎn),且,且,
四邊形為平行四邊形,,即,
平面,平面,平面,命題①正確;
對(duì)于命題②,,平面,平面,平面,
若四點(diǎn)、、、共面,則這四點(diǎn)可確定平面,則,平面平面,由線面平行的性質(zhì)定理可得,
則,但四邊形為梯形且、為兩腰,與相交,矛盾.
所以,命題②錯(cuò)誤;
對(duì)于命題③,連接、,設(shè),則,
在中,,,則為等腰直角三角形,
且,,,且,
由余弦定理得,,
,又,,平面,
平面,,
,、為平面內(nèi)的兩條相交直線,所以,平面,
平面,平面平面,命題③正確;
對(duì)于命題④,假設(shè)平面與平面垂直,過(guò)點(diǎn)在平面內(nèi)作,
平面平面,平面平面,,平面,
平面,
平面,,
,,,,,
又,平面,平面,.
,平面,平面,.
,,顯然與不垂直,命題④錯(cuò)誤.
故答案為:①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的方程是: ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)過(guò)原點(diǎn)的直線與曲線交于, 兩點(diǎn),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過(guò)點(diǎn)的直線與相交于不同的兩點(diǎn),滿足?
若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知都是各項(xiàng)不為零的數(shù)列,且滿足,,其中是數(shù)列的前項(xiàng)和,是公差為的等差數(shù)列.
(1)若數(shù)列的通項(xiàng)公式分別為,求數(shù)列的通項(xiàng)公式;
(2)若(是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;
(3)若(為常數(shù),),(,),對(duì)任意,,求出數(shù)列的最大項(xiàng)(用含式子表達(dá)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)的圖象如圖所示,過(guò)點(diǎn)和
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間和極大值點(diǎn);
(Ⅱ)求實(shí)數(shù)的值;
(Ⅲ)若恰有兩個(gè)零點(diǎn),請(qǐng)直接寫(xiě)出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的單調(diào)減函數(shù)是奇函數(shù),當(dāng)時(shí),.
(Ⅰ)求的值;
(Ⅱ)求的解析式;
(Ⅲ)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且時(shí)有極大值.
(Ⅰ)求的解析式;
(Ⅱ)若為的導(dǎo)函數(shù),不等式(為正整數(shù))對(duì)任意正實(shí)數(shù)恒成立,求的最大值.(注:).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒子中裝有四張大小形狀均相同的卡片,卡片上分別標(biāo)有數(shù)其中是虛數(shù)單位.稱“從盒中隨機(jī)抽取一張,記下卡片上的數(shù)后并放回”為一次試驗(yàn)(設(shè)每次試驗(yàn)的結(jié)果互不影響).
(1)求事件 “在一次試驗(yàn)中,得到的數(shù)為虛數(shù)”的概率與事件 “在四次試驗(yàn)中,
至少有兩次得到虛數(shù)” 的概率;
(2)在兩次試驗(yàn)中,記兩次得到的數(shù)分別為,求隨機(jī)變量的分布列與數(shù)學(xué)期望
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com