設圓C1:x2+y2-10x-6y+32=0,動圓C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求證:圓C1、圓C2相交于兩個定點;
(Ⅱ)設點P是橢圓上的點,過點P作圓C1的一條切線,切點為T1,過點P作圓C2的一條切線,切點為T2,問:是否存在點P,使無窮多個圓C2,滿足PT1=PT2?如果存在,求出所有這樣的點P;如果不存在,說明理由.
【答案】分析:(Ⅰ)化簡動圓C2確定它過的定點,在圓C1上即可.
(Ⅱ)設存在,再設P的坐標,求出PT1,PT2令其相等,求得關系式,P適合橢圓方程,可求得P的坐標.
解答:解:(Ⅰ)將方程x2+y2-2ax-2(8-a)y+4a+12=0化為x2+y2-16y+12+(-2x+2y+4)a=0,
,
所以圓C2過定點(4,2)和(6,4),(4分)
代入x2+y2-10x-6y+32=0,
左邊=16+4-40-12+32=0=右邊,
故點(4,2)在圓C1上,同理可得點(6,4)也在圓C1上,
所以圓C1、圓C2相交于兩個定點(4,2)和(6,4);(6分)
(2)設P(x,y),則,(8分),(10分)
PT1=PT2即-10x-6y+32=-2ax-2(8-a)y+4a+12,
整理得(x-y-2)(a-5)=0(*)(12分)
存在無窮多個圓C2,滿足PT1=PT2的充要條件為有解,
解此方程組得,(14分)
故存在點P,使無窮多個圓C2,滿足PT1=PT2,點P的坐標為.(16分)
點評:本題考查圓與圓的位置關系,考查存在性問題,分析問題和解決問題的能力,是難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設圓C1:x2+y2-10x-6y+32=0,動圓C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求證:圓C1、圓C2相交于兩個定點;
(Ⅱ)設點P是橢圓
x24
+y2=1
上的點,過點P作圓C1的一條切線,切點為T1,過點P作圓C2的一條切線,切點為T2,問:是否存在點P,使無窮多個圓C2,滿足PT1=PT2?如果存在,求出所有這樣的點P;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南通市通州區(qū)平潮高中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

設圓C1:x2+y2-10x-6y+32=0,動圓C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求證:圓C1、圓C2相交于兩個定點;
(Ⅱ)設點P是橢圓上的點,過點P作圓C1的一條切線,切點為T1,過點P作圓C2的一條切線,切點為T2,問:是否存在點P,使無窮多個圓C2,滿足PT1=PT2?如果存在,求出所有這樣的點P;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省海安高級中學、南京外國語學校、金陵中學高三調(diào)研數(shù)學試卷(解析版) 題型:解答題

設圓C1:x2+y2-10x-6y+32=0,動圓C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求證:圓C1、圓C2相交于兩個定點;
(Ⅱ)設點P是橢圓上的點,過點P作圓C1的一條切線,切點為T1,過點P作圓C2的一條切線,切點為T2,問:是否存在點P,使無窮多個圓C2,滿足PT1=PT2?如果存在,求出所有這樣的點P;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省南通市海安縣高級中學高考數(shù)學熱身試卷(解析版) 題型:解答題

設圓C1:x2+y2-10x-6y+32=0,動圓C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求證:圓C1、圓C2相交于兩個定點;
(Ⅱ)設點P是橢圓上的點,過點P作圓C1的一條切線,切點為T1,過點P作圓C2的一條切線,切點為T2,問:是否存在點P,使無窮多個圓C2,滿足PT1=PT2?如果存在,求出所有這樣的點P;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省連云港市東海高級中學高考數(shù)學考前猜題試卷(2)(解析版) 題型:解答題

設圓C1:x2+y2-10x-6y+32=0,動圓C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求證:圓C1、圓C2相交于兩個定點;
(Ⅱ)設點P是橢圓上的點,過點P作圓C1的一條切線,切點為T1,過點P作圓C2的一條切線,切點為T2,問:是否存在點P,使無窮多個圓C2,滿足PT1=PT2?如果存在,求出所有這樣的點P;如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案