13.如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2$\sqrt{3}$,BC=6.
(1)求證:BD⊥平面PAC;
(2)求平面PBD與平面BDA的夾角.

分析 (1)分別以AB、AD、AP所在直線為x、y、z軸,建立如圖所示的空間直角坐標(biāo)系,利用向量法能證明BD⊥平面PAC.
(2)求出平面BDP的法向量和平面ABD的法向量,利用向量法能求出平面PBD與平面BDA的夾角.

解答 證明:(1)∵在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,
∴由題可知,AP、AD、AB兩兩垂直,
分別以AB、AD、AP所在直線為x、y、z軸,建立如圖所示的空間直角坐標(biāo)系,
則A(0,0,0),B($\sqrt{3}$,0,0),C(2$\sqrt{3}$,6,0),D(0,2,0),P(0,0,3),
$\overrightarrow{AP}$=(0,0,3),$\overrightarrow{AC}$=(2$\sqrt{3}$,6,0),$\overrightarrow{BD}$=(-2$\sqrt{3}$,2,0),
∴$\overrightarrow{BD}•\overrightarrow{AP}$=0,$\overrightarrow{BD}•\overrightarrow{AC}$=0,
∴BD⊥AP,BD⊥AC,
又PA∩AC=A,∴BD⊥平面PAC,
解:(2)設(shè)平面BDP的法向量$\overrightarrow{n}$=(x,y,z),
∵$\overrightarrow{BD}$=(-2$\sqrt{3}$,2,0),$\overrightarrow{BP}$=(-2$\sqrt{3}$,0,3),
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=-2\sqrt{3}x+2y=0}\\{\overrightarrow{n}•\overrightarrow{BP}=-2\sqrt{3}x+3z=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3},3,2$),
平面ABD的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)平面PBD與平面BDA的夾角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{16}}$=$\frac{1}{2}$,∴θ=60°,
∴平面PBD與平面BDA的夾角為60°.

點評 本題考查線面垂直的證明,考查二面角的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.命題p:若“?x0∈[0,$\frac{π}{4}$],tanx0>m-3”是假命題,則實數(shù)m的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在向南方雪災(zāi)受災(zāi)地區(qū)的捐款活動中,某慈善組織收到一筆10000元的匿名捐款,該組織經(jīng)過調(diào)查,發(fā)現(xiàn)是甲、乙、丙、丁四個人當(dāng)中的某一個捐的.慈善組織成員對他們進(jìn)行求證時,發(fā)現(xiàn)他們的說法互相矛盾.
甲說:對不起,這錢不是我捐的
乙說:我估計這錢肯定是丁捐的
丙說:乙的收入最高,肯定是乙捐的
丁說:乙的說法沒有任何根據(jù)
假定四人中只有一個說了真話,那么真正的捐款者是甲(僅一人).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(理科)已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,A是E的右頂點,B1、B2是E的短軸兩頂點,且直線B1A的斜率與直線B2A的斜率之積為-$\frac{3}{4}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過E的右焦點F2作直線與E交于M、N兩點,直線MA、NA與直線X=3分別交于C、D兩點,設(shè)△ACD與△AMN的面積分別記為S1、S2,求2S1-S2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.計算C${\;}_{n}^{1}$+2•C${\;}_{n}^{2}$2+…+n•C${\;}_{n}^{n}$2n-1=n(1+2)n-1,可以采用以下方法:
構(gòu)造恒等式:C${\;}_{n}^{0}$+C${\;}_{n}^{1}$2x+C${\;}_{n}^{2}$22x2+…+C${\;}_{n}^{n}$2nxn=(1+2x)n
兩邊對x導(dǎo),得C${\;}_{n}^{1}$2+2•C${\;}_{n}^{2}$22x+••+n•C${\;}_{n}^{n}$2nxn-1=2n(1+2x)n-1
在上式中令x=1,得C${\;}_{n}^{1}$+2•C${\;}_{n}^{2}$2+…+n•C${\;}_{n}^{n}$2n-1=n(1+2)n-1=n•3n-1
類比上述計算方法,計算C${\;}_{n}^{1}$2+22C${\;}_{n}^{2}$22+32C${\;}_{n}^{3}$23+…+n2C${\;}_{n}^{n}$2n=2n(2n+1)3n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.給定正奇數(shù)n,數(shù)列{an}:a1,a2,…,an是1,2,…,n的一個排列,定義E(a1,a2,…,an)=|a1-1|+|a2-2|+…+|an-n|為數(shù)列{an}:a1,a2,…,an的位差和.
(Ⅰ)當(dāng)n=5時,則數(shù)列{an}:1,3,4,2,5的位差和為4;
(Ⅱ)若位差和E(a1,a2,…,an)=4,則滿足條件的數(shù)列{an}:a1,a2,…,an的個數(shù)為$\frac{{({n-2})({n+3})}}{2}$.;(用n表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中點.
(Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)求二面角P-AC-E的余弦值;
(Ⅲ)求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如表:
零件的個數(shù)x(個)2345
加工的時間y(小時)2.5344.5
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+a,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測加工10個零件需要多少時間?參考公式:
b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的離心率為$e=\frac{1}{2}$,直線x+2y-1=0經(jīng)過橢圓的一個焦點;
(1)求橢圓的方程;
(2)過橢圓右焦點F的直線l(與坐標(biāo)軸均不垂直)交橢圓于A、B兩點,點B關(guān)于x軸的對稱點為P;問直線AP是否恒過定點?若是,求出定點坐標(biāo);若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案