已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為(1,3).
⑴若方程有兩個(gè)相等實(shí)數(shù)根,求的解析式.
⑵若的最大值為正數(shù),求實(shí)數(shù)的取值范圍.
(1),(2).
解析試題分析:(1)求二次函數(shù)解析式,一般用待定系數(shù)法,如何設(shè)二次函數(shù)解析式是解題關(guān)鍵.本題設(shè)零點(diǎn)式比較到位. ∵二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式解集為(1,3),∴可設(shè),且∴,由方程得,∵方程有兩個(gè)相等的實(shí)根,∴或,而,∴從而,(2)由
∴解得或.
解:⑴∵二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式解集為(1,3),
∴可設(shè),且 2分
∴
由方程得, 4分
∵方程有兩個(gè)相等的實(shí)根,∴或,而,
∴從而 6分
⑵由∴ 8分
∴解得或 11分
∴實(shí)數(shù)的取值范圍是. 12分
考點(diǎn):二次函數(shù)解析式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某小區(qū)想利用一矩形空地建市民健身廣場(chǎng),設(shè)計(jì)時(shí)決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個(gè)等腰直角三角形,其中,,且中,,經(jīng)測(cè)量得到.為保證安全同時(shí)考慮美觀,健身廣場(chǎng)周?chē)鷾?zhǔn)備加設(shè)一個(gè)保護(hù)欄.設(shè)計(jì)時(shí)經(jīng)過(guò)點(diǎn)作一直線交于,從而得到五邊形的市民健身廣場(chǎng),設(shè).
(1)將五邊形的面積表示為的函數(shù);
(2)當(dāng)為何值時(shí),市民健身廣場(chǎng)的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)是否存在實(shí)數(shù),當(dāng)(是自然常數(shù))時(shí),函數(shù)的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由;
(3)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集為(-1,3).
(1)求a,b的值;
(2)若函數(shù)f(x)在x∈[m,1]上的最小值為1,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求的解集;
(2)設(shè)函數(shù),若對(duì)任意的都成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)二次函數(shù)滿足條件:①;②函數(shù)的圖像與直線相切.
(1)求函數(shù)的解析式;
(2)若不等式在時(shí)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義在[﹣1,1]上的奇函數(shù)f(x)滿足f(1)=2,且當(dāng)a,b∈[﹣1,1],a+b≠0時(shí),有.
(1)試問(wèn)函數(shù)f(x)的圖象上是否存在兩個(gè)不同的點(diǎn)A,B,使直線AB恰好與y軸垂直,若存在,求出A,B兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由并加以證明.
(2)若對(duì)所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某公司為一家制冷設(shè)備廠設(shè)計(jì)生產(chǎn)某種型號(hào)的長(zhǎng)方形薄板,其周長(zhǎng)為4m.這種薄板須沿其對(duì)角線折疊后使用.如圖所示,ABCD(AB>AD)為長(zhǎng)方形薄板,沿AC折疊后AB′交DC于點(diǎn)P.當(dāng)△ADP的面積最大時(shí)最節(jié)能,凹多邊形ACB′PD的面積最大時(shí)制冷效果最好.
(1)設(shè)AB=xm,用x表示圖中DP的長(zhǎng)度,并寫(xiě)出x的取值范圍;
(2)若要求最節(jié)能,應(yīng)怎樣設(shè)計(jì)薄板的長(zhǎng)和寬?
(3)若要求制冷效果最好,應(yīng)怎樣設(shè)計(jì)薄板的長(zhǎng)和寬?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com