如圖,焦距為的橢圓的兩個頂點分別為和,且與n,共線.
(1)求橢圓的標準方程;
(2)若直線與橢圓有兩個不同的交
點和,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍.
(1) ;(2)
解析試題分析:(1)根據(jù)橢圓方程寫出頂點的坐標,然后寫出的坐標,利用兩向量共線的充要條件:,得與的關(guān)系,結(jié)合,解出與,求出橢圓的方程;(2)設(shè)直線,與橢圓有兩個不同的交點和,設(shè),將直線方程代入橢圓方程,消去,得到關(guān)于的方程,由兩個不同交點,,并且得到與,原點總在以為直徑的圓的內(nèi)部,為鈍角,即,整理,代入根與系數(shù)的關(guān)系,比較得出的取值范圍.
試題解析:(1)解:設(shè)橢圓的標準方程為,由已知得,,,,所以,,
因為與n,共線,所以, 2分
由,解得,,
所以橢圓的標準方程為. 4分
(2)解:設(shè),,,,把直線方程代入橢圓方程,
消去,得,
所以,, 8分
,即 (*) 9分
因為原點總在以為直徑的圓的內(nèi)部,
所以,即, 10分
又,
由得, 13分
依題意且滿足(*)得
故實數(shù)的取值范圍是
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C與直線l1:y=-x的一個交點的橫坐標為8.
(1)求拋物線C的方程;
(2)不過原點的直線l2與l1垂直,且與拋物線交于不同的兩點A,B,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的離心率為,軸被曲線截得的線段長等于的短軸長。與軸的交點為,過坐標原點的直線與相交于點,直線分別與相交于點。
(1)求、的方程;
(2)求證:。
(3)記的面積分別為,若,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率與雙曲線的離心率互為倒數(shù),直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點為,右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;
(3)設(shè)第(2)問中的與軸交于點,不同的兩點在上,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,點P(0,-1)是橢圓C1:=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑.l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知分別是橢圓的左,右頂點,點在橢圓 上,且直線與直線的斜率之積為.
(1)求橢圓的標準方程;
(2)點為橢圓上除長軸端點外的任一點,直線,與橢圓的右準線分別交于點,.
①在軸上是否存在一個定點,使得?若存在,求點的坐標;若不存在,說明理由;
②已知常數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線x2-y2=2若直線n的斜率為2 ,直線n與雙曲線相交于A、B兩點,線段AB的中點為P,
(1)求點P的坐標(x,y)滿足的方程(不要求寫出變量的取值范圍);
(2)過雙曲線的左焦點F1,作傾斜角為的直線m交雙曲線于M、N兩點,期中,F(xiàn)2是雙曲線的右焦點,求△F2MN的面積S關(guān)于傾斜角的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,動點滿足:點到定點與到軸的距離之差為.記動點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過點的直線交曲線于、兩點,過點和原點的直線交直線于點,求證:直線平行于軸.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
拋物線,其準線方程為,過準線與軸的交點做直線交拋物線于兩點.
(1)若點為中點,求直線的方程;
(2)設(shè)拋物線的焦點為,當時,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com