設(shè)等差數(shù)列的前項(xiàng)和滿足,
(1)求的通項(xiàng)公式;
(2)求的前項(xiàng)和
(1) ;(2).

試題分析:(1)由,,建立方程組,可解得,即可求出通項(xiàng)公式;(2)根據(jù)(1)和等差數(shù)列的前n項(xiàng)和的公式即可求出結(jié)果.
(1)設(shè)數(shù)列的首項(xiàng)為,公差為,則
解得,.                                    .6分
.                                         .8分
(2).                      .13分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{}的前項(xiàng)和為,且滿足,
(1)求證:{}是等差數(shù)列;
(2)求表達(dá)式;
(3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(,an+1)( n ∈N*)在函數(shù)y=x2+1的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列 滿足b1=1,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=a,an+1=Sn+3n,n∈N*.
(1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項(xiàng)公式;
(2)若an+1≥an,n∈N*,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,,猜想的表達(dá)式為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校高一學(xué)生1000人,每周一次同時(shí)在兩個(gè)可容納600人的會(huì)議室,開設(shè)“音樂欣賞”與“美術(shù)鑒賞”的校本課程.要求每個(gè)學(xué)生都參加,要求第一次聽“音樂欣賞”課的人數(shù)為,其余的人聽“美術(shù)鑒賞”課;從第二次起,學(xué)生可從兩個(gè)課中自由選擇.據(jù)往屆經(jīng)驗(yàn),凡是這一次選擇“音樂欣賞”的學(xué)生,下一次會(huì)有20﹪改選“美術(shù)鑒賞”,而選“美術(shù)鑒賞”的學(xué)生,下次會(huì)有30﹪改選“音樂欣賞”,用分別表示在第次選“音樂欣賞”課的人數(shù)和選“美術(shù)鑒賞”課的人數(shù).
(1)若,分別求出第二次,第三次選“音樂欣賞”課的人數(shù);
(2)①證明數(shù)列是等比數(shù)列,并用表示;
②若要求前十次參加“音樂欣賞”課的學(xué)生的總?cè)舜尾怀^5800,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列的前項(xiàng)和為,,,取得最小值時(shí)的值為(  。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·湖北模擬]已知等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且a1 a3,2a2成等差數(shù)列,則=(  )
A.1+B.1-C.3+2D.3-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是首項(xiàng)為,公差為的等差數(shù)列,為其前項(xiàng)和.若成等比數(shù)列,則的值為__________.

查看答案和解析>>

同步練習(xí)冊答案