【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).

(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;

(2)若bn=an+2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn..

【答案】(1)證明見解析, ;(2)

【解析】分析:(1)根據(jù)Snn2an仿寫可得Sn12an1(n1)(n≥2),兩式相減變形后可得an12(an11)(n≥2)從而可得等比數(shù)列{an1},進(jìn)而可得數(shù)列{an}的通項(xiàng)公式.(21可得bnan2n1=2n2n,然后利用分組求和法可得Tn

詳解(1)∵Snn2an,

Sn12an1(n1)(n≥2)

SnSn1=an2an11,

an12(an11)(n≥2),

n1S11a11=2a1,

a11

a112≠0,

數(shù)列{an1}是首項(xiàng)為2,公比為2的等比數(shù)列.

,

an2n1

(2)1bnan2n1=2n2n

Tn

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

(1)若,求使得成立的的集合;

(2)當(dāng)時,函數(shù)只有一個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù) 的單調(diào)增區(qū)間;
(2)若函數(shù) 上的最小值為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五點(diǎn)法作函數(shù)的圖象時,所填的部分?jǐn)?shù)據(jù)如下:

(1)根據(jù)表格提供數(shù)據(jù)求函數(shù)的解析式;

2當(dāng),求函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】美索不達(dá)米亞平原是人類文明的發(fā)祥地之一.美索不達(dá)米亞人善于計算,他們創(chuàng)造了優(yōu)良的計數(shù)系統(tǒng),其中開平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運(yùn)算都精確到小數(shù)點(diǎn)后兩位)則輸出結(jié)果為(
A.2.81
B.2.82
C.2.83
D.2.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑為1的球O內(nèi)切于正四面體A﹣BCD,線段MN是球O的一條動直徑(M,N是直徑的兩端點(diǎn)),點(diǎn)P是正四面體A﹣BCD的表面上的一個動點(diǎn),則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{bn}是等比數(shù)列,滿足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=anbn , 設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校后勤處為跟蹤調(diào)查該校餐廳的當(dāng)月的服務(wù)質(zhì)量,兌現(xiàn)獎懲,從就餐的學(xué)生中隨機(jī)抽出100位學(xué)生對餐廳服務(wù)質(zhì)量打分(5分制),得到如下柱狀圖:

(1)從樣本中任意選取2名學(xué)生,求恰好有一名學(xué)生的打分不低于4分的概率;
(2)若以這100人打分的頻率作為概率,在該校隨機(jī)選取2名學(xué)生進(jìn)行打分(學(xué)生打分之間相互獨(dú)立)記 表示兩人打分之和,求 的分布列和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生對函數(shù)的性質(zhì)進(jìn)行研究,得出如下的結(jié)論:

①函數(shù)上單調(diào)遞增,在上單調(diào)遞減;

②點(diǎn)是函數(shù)圖像的一個對稱中心;

③存在常數(shù),使對一切實(shí)數(shù)均成立;

④函數(shù)圖像關(guān)于直線對稱.其中正確的結(jié)論是__________

查看答案和解析>>

同步練習(xí)冊答案