【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點(diǎn)是,點(diǎn)軸上的射影恰好是橢圓的右焦點(diǎn),橢圓的另一個(gè)焦點(diǎn)是,且.

1)求橢圓的方程;

2)直線過點(diǎn),且與橢圓交于,兩點(diǎn),求的面積的最大值及此時(shí)內(nèi)切圓半徑.

【答案】(1);(2的面積最大值為3,內(nèi)切圓半徑.

【解析】

(1)由已知可得,根據(jù)可得,代入橢圓可得,從而可得,可得橢圓方程;

(2)根據(jù)可得,換元可得,根據(jù)單調(diào)性可求得面積的最大值為3,根據(jù)為三角形內(nèi)切圓半徑),可求得三角形內(nèi)切圓半徑.

1)設(shè)橢圓方程為.點(diǎn)在直線上,且點(diǎn)軸上的射影恰好是橢圓的右焦點(diǎn),則點(diǎn).

.,,所以,

,

解得,

∴橢圓方程為.

2)由(1)知

設(shè)直線方程為,,,則

,消去,

.

,

,則,∴.

,,

當(dāng)時(shí),,上單調(diào)遞增,

,當(dāng)時(shí)取等號(hào),

即當(dāng)時(shí),的面積最大值為3.

過點(diǎn)的直線與橢圓交于,兩點(diǎn),則的周長為.

為三角形內(nèi)切圓半徑),

∴當(dāng)的面積最大時(shí),,得內(nèi)切圓半徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖).已知上學(xué)所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,,

1)求直方圖中x的值;

2)如果上學(xué)所需時(shí)間在的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,請(qǐng)估計(jì)該校800名新生中有多少名學(xué)生可以申請(qǐng)住宿.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=xsinx的圖象是下列兩個(gè)圖象中的一個(gè),如圖,請(qǐng)你選擇后再根據(jù)圖象作出下面的判斷:若x1,x2∈(),且fx1)<fx2),則(  

A.x1x2B.x1+x20C.x1x2D.x12x22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長交AB于點(diǎn)G.

)證明:GAB的中點(diǎn);

)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,大衍數(shù)列02,4,8,12….來源于《乾坤譜》中對(duì)《易傳》大衍之?dāng)?shù)五十的推論,主要用于解釋中國傳統(tǒng)文化中的太極衍生過程中曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.下圖是求大衍數(shù)列前項(xiàng)和的程序框圖.執(zhí)行該程序框圖,輸入,則輸出的

A.100B.140C.190D.250

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是(  )

A. 回答該問卷的總?cè)藬?shù)不可能是100個(gè)

B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多

C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少

D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),直線的斜率與直線的斜率乘積為.

(1)求橢圓的方程;

(2)不經(jīng)過點(diǎn)的直線)與橢圓交于,兩點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為(與點(diǎn)不重合),直線,軸分別交于兩點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足對(duì)任意的恒成立,為其前n項(xiàng)的和,且,.

1)求數(shù)列的通項(xiàng);

2)數(shù)列滿足,其中.

①證明:數(shù)列為等比數(shù)列;

②求集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)求fx)的單調(diào)遞增區(qū)間;

2)設(shè)△ABC的三個(gè)內(nèi)角A,BC的對(duì)邊分別為a,b,c,若a2時(shí),求△ABC周長的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案