已知數(shù)列{an}的首項a1=5前n項和為Sn,且

(1)

證明數(shù)列{an+1}是等比數(shù)列;

(2)

,求函數(shù)y=f(x)在點x=1處的導(dǎo)數(shù)f′(1);并比較2f′(1)與23n2-13n的大。

答案:
解析:

(1)

解:由已知可得,

兩式相減得

從而

當(dāng)所以

所以從而

故總有

從而

即數(shù)列是首項為6,公比為2的等比數(shù)列;

(2)

解:由(I)知因為

所以

從而

由上

=12

當(dāng)時,①式=0所以;<

當(dāng)時,①式=-12所以

當(dāng)時,n-1>0

所以即①從而


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=
1
2
,前n項和Sn=n2an(n≥1).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn為數(shù)列{bn}的前n項和,求證:Tn
n2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項為a1=2,前n項和為Sn,且對任意的n∈N*,當(dāng)n≥2,時,an總是3Sn-4與2-
52
Sn-1
的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項和,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江門一模)已知數(shù)列{an}的首項a1=1,若?n∈N*,an•an+1=-2,則an=
1,n是正奇數(shù)
-2,n是正偶數(shù)
1,n是正奇數(shù)
-2,n是正偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項為a1=3,通項an與前n項和sn之間滿足2an=Sn•Sn-1(n≥2).
(1)求證:數(shù)列{
1Sn
}
是等差數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{an}中的最大項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=
2
3
,an+1=
2an
an+1
,n∈N+
(Ⅰ)設(shè)bn=
1
an
-1
證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)數(shù)列{
n
bn
}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案