17.已知全集U=R,A={x|x≥3},B={x|x2-8x+7≤0},C={x|x≥a-1}
(1)求A∩B,A∪B;
(2)若A∩C=C,求實數(shù)a的取值范圍.

分析 (1)解關于集合B的不等式,求出x的范圍,從而求出A∩B,A∪B;
(2)由A∩C=C,得到C⊆A,從而求出a的范圍即可.

解答 解:(1)由題意可得B={x|x2-8x+7≤0}={x|1≤x≤7},…(2分),
∴A∩B={x|3≤x≤7},A∪B={x|x≥1}                          …(6分)
(2)∵A∩C=C,∴C⊆A…(8分) 
∴a-1≥3,∴a≥4…(10分)

點評 本題考查了集合的交集、并集的運算,考查集合的包含關系,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知數(shù)列{an}滿足:2an=an-1+an+1(n≥2),a1=1,且a2+a4=10,若Sn為數(shù)列{an}的前n項和,則$\frac{2{S}_{n}+18}{{a}_{n}+3}$的最小值為( 。
A.4B.3C.$\frac{26}{4}$D.$\frac{13}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知直線y=ax+1與雙曲線3x2-y2=1相交于A,B兩點,O為坐標原點.
(1)求a的取值范圍;
(2)如果OA與OB垂直,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.海州市育才中學高一(8)班共有學生56人,編號依次為1,2,3,…56,現(xiàn)用系統(tǒng)抽樣的方法抽取一個容量為4的樣本,已知6,34,48號的同學已在樣本中,那么還有一個同學的編號是20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.將一枚骰子先后拋擲兩次得到的點數(shù)依次記為a,b,則直線ax+by=0與圓(x-2)2+y2=2無公共點的概率為$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知0<a<1,函數(shù)f(x)=loga(ax-1)
(I)求函數(shù)f(x)的定義域;
(Ⅱ)判斷f(x)的單調(diào)性;
(Ⅲ)若m滿足f(1-m)≥f(1-m2),求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.(1)計算:2log32-log3$\frac{32}{9}$+log38-25${\;}^{lo{g}_{5}3}$-${({2\frac{10}{27}})^{-\frac{2}{3}}}$+8π0
(2)已知x=27,y=64.化簡并計算:$\frac{{5{x^{-\frac{2}{3}}}{y^{\frac{1}{2}}}}}{{({-\frac{1}{4}{x^{-1}}{y^{\frac{1}{2}}}})({-\frac{5}{6}{x^{\frac{1}{3}}}{y^{-\frac{1}{6}}}})}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.圓x2+y2+2x-4y+1=0關于直線ax+y+1=0對稱,則a=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.計算:(1)${(\frac{3}{2})^{-2}}-{(-4.5)^0}-{(\frac{8}{27})^{\frac{2}{3}}}$;
(2)$\frac{2}{3}$lg8+lg25-${3^{2{{log}_3}5}}$+${16^{\frac{3}{4}}}$.

查看答案和解析>>

同步練習冊答案