設(shè)函數(shù).
(I)當(dāng)時(shí),求的單調(diào)區(qū)間;
(II)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
(I)減區(qū)間為(-,),增區(qū)間為(,+)(II)
解析試題分析:解:(1)當(dāng)a=2時(shí):f(x)= +=
原函數(shù)的減區(qū)間為(-,),增區(qū)間為(,+);
(2)∵x (-1,3) f(x)<10可變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/c1/9/1orxo2.png" style="vertical-align:middle;" />-10<a-x< 10-
即
對(duì)(*):令g(x)= +x-10,其對(duì)稱(chēng)軸為
③
對(duì)②令
④
由③、④知:
考點(diǎn):函數(shù)的單調(diào)區(qū)間;絕對(duì)值不等式
點(diǎn)評(píng):求含有絕對(duì)值的函數(shù),常將函數(shù)變?yōu)榉侄魏瘮?shù)。對(duì)于求不等式中常數(shù)的范圍,常要分步討論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(I)求函數(shù)的最小值;
(II)對(duì)于函數(shù)和定義域內(nèi)的任意實(shí)數(shù),若存在常數(shù),使得不等式和都成立,則稱(chēng)直線是函數(shù)和的“分界線”.
設(shè)函數(shù),,試問(wèn)函數(shù)和是否存在“分界線”?若存在,求出“分界線”的方程.若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某單位設(shè)計(jì)的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據(jù)熱傳導(dǎo)知識(shí),對(duì)于厚度為的均勻介質(zhì),兩側(cè)的溫度差為,單位時(shí)間內(nèi),在單位面積上通過(guò)的熱量,其中為熱傳導(dǎo)系數(shù).假定單位時(shí)間內(nèi),在單位面積上通過(guò)每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導(dǎo)系數(shù)為,空氣的熱傳導(dǎo)系數(shù)為.)
(1)設(shè)室內(nèi),室外溫度均分別為,,內(nèi)層玻璃外側(cè)溫度為,外層玻璃內(nèi)側(cè)溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時(shí)間內(nèi),在單位面積上通過(guò)的熱量(結(jié)果用,及表示);
(2)為使雙層中空玻璃單位時(shí)間內(nèi),在單位面積上通過(guò)的熱量只有單層玻璃的4%,應(yīng)如何設(shè)計(jì)的大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1) 試問(wèn)函數(shù)f(x)能否在x= 時(shí)取得極值?說(shuō)明理由;
(2) 若a= ,當(dāng)x∈[,4]時(shí),函數(shù)f(x)與g(x)的圖像有兩個(gè)公共點(diǎn),求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的房頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能源消耗費(fèi)用為C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿(mǎn)足關(guān)系:C(x)=(0x10),若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
作為紹興市2013年5.1勞動(dòng)節(jié)系列活動(dòng)之一的花卉展在鏡湖濕地公園舉行.現(xiàn)有一占地1800平方米的矩形地塊,中間三個(gè)矩形設(shè)計(jì)為花圃(如圖),種植有不同品種的觀賞花卉,周?chē)鷦t均是寬為1米的賞花小徑,設(shè)花圃占地面積為平方米,矩形一邊的長(zhǎng)為米(如圖所示)
(1)試將表示為的函數(shù);
(2)問(wèn)應(yīng)該如何設(shè)計(jì)矩形地塊的邊長(zhǎng),使花圃占地面積取得最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com