1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{15}}{4}$,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,P是橢圓上任意一點,且△PF1F2的周長是8+2$\sqrt{15}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)圓T:(x-2)2+y2=$\frac{4}{9}$,過橢圓的上頂點M作圓T的兩條切線交橢圓于E、F兩點,求直線EF的斜率.

分析 (1)由橢圓離心率得到a,c的關(guān)系,再由△PF1F2的周長,得a,c的另一關(guān)系,聯(lián)立求得a,c的值,代入隱含條件求得b,則橢圓方程可求;
(Ⅱ)橢圓的上頂點為M(0,1),設(shè)過點M與圓T相切的直線方程為y=kx+1,由直線y=kx+1與圓T相切可知$\frac{|2k+1|}{\sqrt{1+{k}^{2}}}$=$\frac{2}{3}$,即32k2+36k+5=0,由根與系數(shù)關(guān)系得到k1+k2=-$\frac{9}{8}$,k1k2=$\frac{5}{32}$,再聯(lián)立一切線方程和橢圓方程,求得E的坐標(biāo),同理求得F坐標(biāo),利用斜率公式得到kEF

解答 解:(Ⅰ)由題意,e=$\frac{c}{a}$=$\frac{\sqrt{15}}{4}$=$\frac{\sqrt{{a}^{2}-^{2}}}{a}$,可知a=4b,c=$\sqrt{15}$b,
∵△PF1F2的周長是8+2$\sqrt{15}$,∴2a+2c=8+2$\sqrt{15}$,
∴a=4,b=1,
∴所求橢圓方程為$\frac{{x}^{2}}{16}$+y2=1   …(4分)
(Ⅱ)橢圓的上頂點為M(0,1),由題知過點M與圓T相切的直線有斜率,
則設(shè)其方程為l:y=kx+1,由直線y=kx+1與圓T相切可知$\frac{|2k+1|}{\sqrt{1+{k}^{2}}}$=$\frac{2}{3}$,
即32k2+36k+5=0,∴k1+k2=-$\frac{9}{8}$,k1k2=$\frac{5}{32}$,…(6分)
由$\left\{\begin{array}{l}{y={k}_{1}x+1}\\{\frac{{x}^{2}}{16}+{y}^{2}=1}\end{array}\right.$得(1+16k12)x2+32k1x=0,
∴xE=-$\frac{32{k}_{1}}{1+16{{k}_{1}}^{2}}$.
 同理xF=-$\frac{32{k}_{2}}{1+16{{k}_{2}}^{2}}$        …(9分)
kEF=$\frac{{y}_{E}-{y}_{F}}{{x}_{E}-{x}_{F}}$=$\frac{{k}_{1}{x}_{E}-{k}_{2}{x}_{F}}{{x}_{E}-{x}_{F}}$=$\frac{{k}_{1}+{k}_{2}}{1-16{k}_{1}{k}_{2}}$=$\frac{3}{4}$
故直線EF的斜率為$\frac{3}{4}$.…(12分)

點評 本題考查了橢圓方程的求法,考查了直線與圓,直線與橢圓的位置關(guān)系,直線與圓相切的條件,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知矩形ABCD的頂點都在球O的球面上,AB=6,BC=2$\sqrt{3}$,四棱錐O-ABCD的體積為8$\sqrt{3}$,則球O的表面積為64π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.等比數(shù)列{an}中,an=54.前n項和前2n項和分別為Sn=80,S2n=6560.
(1)求首項a1和公比q;
(2)若A1=$\frac{π}{4}$,數(shù)列{An}滿足An-An-1=a1•$\frac{π}{6}$,(n≥2),設(shè)cn=tanAntanAn-1.求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}中,a1=1,a2k=a2k-1+(-1)k,a2k+1=a2k+2k(k∈N*),則{an}的前60項的和S60=232-94.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)(x∈R)是周期為4的奇函數(shù),且在[0,2]上的解析式為f(x)=$\left\{\begin{array}{l}x(1-x),0≤x≤1\\ sinπx,1<x≤2\end{array}$,則f($\frac{15}{2}$)+f($\frac{20}{3}$)=$\frac{{2\sqrt{3}-1}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=ex+ae-x為偶函數(shù),則f(x-1)>$\frac{{{e^4}+1}}{e^2}$的解集為(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=ln(x-1)-$\frac{3}{x}$的零點在區(qū)間(k,k+1)(k∈Z)上,則k的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖:在△ABC中,D為AB邊上一點,DA=DC,已知∠B=$\frac{π}{4}$,BC=3
(1)若△BCD為銳角三角形,DC=$\sqrt{6}$,求角A的大。
(2)若△BCD的面積為$\frac{3}{2}$,求邊AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)F1,F(xiàn)2分別為橢圓C1:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)與雙曲線C2:$\frac{x^2}{a_1^2}$-$\frac{y^2}{b_1^2}$=1(a1>0,b1>0)的公共焦點,它們在第一象限內(nèi)交于點M,∠F1MF2=90°,若橢圓的離心率e=$\frac{3}{4}$,則雙曲線C2的離心率e1為( 。
A.$\frac{9}{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

同步練習(xí)冊答案