(本小題滿分13分)
如圖,設拋物線的準線與軸交于,焦點為;以為焦點,離心率的橢圓與拋物線軸上方的交點為,延長交拋物線于點是拋物線上一動點,且M之間運動.
(1)當時,求橢圓的方程;
(2)當的邊長恰好是三個連續(xù)的自然數(shù)時,求面積的最大值.
解析:(1)當時, ,則
,得,代入拋物線方程得,即,
,,
因為的邊長恰好是三個連續(xù)的自然數(shù),所以.         …………8分

             …………11分
時,
面積的最大值為.      …………13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知點,動點、分別在軸上運動,滿足,為動點,并且滿足
(1)求點的軌跡的方程;
(2)過點的直線(不與軸垂直)與曲線交于兩點,設點,的夾角為,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一圓形紙片的圓心為O,點Q是圓內(nèi)異于O點的一個定點,點A是圓周上一動點,把紙片折疊使得點A與點Q重合,然后抹平紙片,折痕CD與OA交于點P,當點A運動時,點P的軌跡為()
A 橢圓             B 雙曲線          C 拋物線        D 圓

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知拋物線)的焦點為橢圓的右焦點,點、為拋物線上的兩點,是拋物線的頂點,
(Ⅰ)求拋物線的標準方程;
(Ⅱ)求證:直線過定點;
(Ⅲ)設弦的中點為,求點到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知M(-3,0)﹑N(3,0),P為坐標平面上的動點,且直線PM與直線PN的斜率之積為常數(shù)m(m-1,m0).
(1)求P點的軌跡方程并討論軌跡是什么曲線?
(2)若, P點的軌跡為曲線C,過點Q(2,0)斜率為的直線與曲線C交于不同的兩點A﹑B,AB中點為R,直線OR(O為坐標原點)的斜率為,求證為定值;
(3)在(2)的條件下,設,且,求在y軸上的截距的變化范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系XOY中,A,B分別為直線x+y=2與x、y軸的交點,C為AB的中點. 若拋物線(p>0)過點C,求焦點F到直線AB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

⊿ABC中,B(-2,0),C(2,0),中線AD的長為3,則點A的軌跡方程為(   )
A.x2+y2=9(y≠0)B.x2-y2=9(y≠0)
C.x2+y2="16" (y≠0)D.x2-y2=16(y≠0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以橢圓的焦點為頂點,以橢圓的頂點為焦點的雙曲線方程為
                   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知的兩個頂點為,周長為12.
(1)求頂點的軌跡方程;
(2)若直線與點的軌跡交于兩點,求的面積.

查看答案和解析>>

同步練習冊答案