【題目】如圖,在三棱錐中,,,為的中點.
(1)證明:平面;
(2)若點在棱上,且二面角為,求與平面所成角的正弦值.
【答案】(1)見解析(2)
【解析】分析:(1)根據(jù)等腰三角形性質(zhì)得PO垂直AC,再通過計算,根據(jù)勾股定理得PO垂直O(jiān)B,最后根據(jù)線面垂直判定定理得結(jié)論,(2)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),根據(jù)方程組解出平面PAM一個法向量,利用向量數(shù)量積求出兩個法向量夾角,根據(jù)二面角與法向量夾角相等或互補關(guān)系列方程,解得M坐標(biāo),再利用向量數(shù)量積求得向量PC與平面PAM法向量夾角,最后根據(jù)線面角與向量夾角互余得結(jié)果.
詳解:(1)因為,為的中點,所以,且.
連結(jié).因為,所以為等腰直角三角形,
且,.
由知.
由知平面.
(2)如圖,以為坐標(biāo)原點,的方向為軸正方向,建立空間直角坐標(biāo)系.
由已知得取平面的法向量.
設(shè),則.
設(shè)平面的法向量為.
由得,可取,
所以.由已知得.
所以.解得(舍去),.
所以.又,所以.
所以與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A.將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變
B.設(shè)有一個線性回歸方程,變量x增加1個單位時,y平均增加5個單位
C.設(shè)具有相關(guān)關(guān)系的兩個變量x,y的相關(guān)系數(shù)為r,則越接近于0,x和y之間的線性相關(guān)程度越強
D.在一個列聯(lián)表中,由計算得的值,則的值越大,判斷兩個變量間有關(guān)聯(lián)的把握就越大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.
證明:;
設(shè),點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)甲,乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得出了如下數(shù)據(jù):
間隔時間(分鐘) | 10 | 11 | 12 | 13 | 14 | 15 |
等待人數(shù)(人) | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這六組數(shù)據(jù)中選取四組數(shù)據(jù)作線性回歸分析,然后用剩下的兩組數(shù)據(jù)進(jìn)行檢驗
(1)求從這六組數(shù)據(jù)中選取四組數(shù)據(jù)后,剩下的的兩組數(shù)據(jù)不相鄰的概率:
(2)若先取的是后面四組數(shù)據(jù),求關(guān)干的線性回歸方程;
(3)規(guī)定根據(jù)(2)中線性回歸方程預(yù)利的數(shù)據(jù)與用剩下的兩組實際數(shù)據(jù)相差不超過人,則所求出的線性回歸方程是“最佳回歸方程”,請判斷(2)中所求的是 “最佳回歸方程”嗎?為了使等候的乘客不超過人,則間隔時間設(shè)置為分鐘合適嗎?
附:對于一組組數(shù)據(jù), 其回歸直線 +的斜率和截距的最小二乘估計分別為: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“!薄ⅰ皥@”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“!、“園”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):
由此可以估計,恰好第三次就停止摸球的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)束.
(Ⅰ)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(Ⅱ)已知每檢測一件產(chǎn)品需要費用100元,設(shè)表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為=(>0),過點的直線的參數(shù)方程為(t為參數(shù)),直線與曲線C相交于A,B兩點.
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若,解不等式;
(Ⅱ)設(shè)是函數(shù)的四個不同的零點,問是否存在實數(shù),使得其中三個零點成等差數(shù)列?若存在,求出所有的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com