4.已知函數(shù)f(x)=x3+ax2+1(a∈R).
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的極值;
(2)若f(x)在區(qū)間[1,2]上單調(diào)遞減,求a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)通過討論a的范圍,結(jié)合函數(shù)的單調(diào)性得到[1,2]⊆[0,-$\frac{2}{3}$a],求出a的范圍即可.

解答 解:(1)f′(x)=3x2+2ax=x(3x+2a)(a>0),
令f′(x)>0,解得:x>0或x<-$\frac{2}{3}$a,
令f′(x)<0,解得:-$\frac{2}{3}$a<x<0,
故f(x)在(-∞,-$\frac{2}{3}$a)遞增,在(-$\frac{2}{3}$a,0)遞減,在(0,+∞)遞增,
故f(x)極大值=f(-$\frac{2}{3}$a)=-$\frac{8}{27}$a3+a•$\frac{4}{9}$a2+1=$\frac{4}{12}$a3+1,
f(x)極小值=f(0)=1.
(2)由(1)a≥0時(shí),f(x)在[1,2]遞減,不合題意,
a<0時(shí),f(x)在(-∞,0)遞增,在(0,-$\frac{2}{3}$a)遞減,在(-$\frac{2}{3}$a,+∞)遞增,
若f(x)在[1,2]遞減,則[1,2]⊆[0,-$\frac{2}{3}$a],
故-$\frac{2}{3}$a≥2,解得:a≤-3,
故a的范圍是(-∞,-3].

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果a>0>b且a+b>0,那么以下不等式正確的個(gè)數(shù)是(  )
①a2b<b3;②$\frac{1}{a}$>0>$\frac{1}$;③a3<ab2;④a3>b3
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知正四棱錐的底面邊長是2,側(cè)面積為12,則該正四棱錐的體積為$\frac{8\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2+bx+c的圖象過點(diǎn)(-1,3),且關(guān)于直線x=1對稱
(Ⅰ)求f(x)的解析式;
(Ⅱ)若m<3,求函數(shù)f(x)在區(qū)間[m,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=|x2-4x|-a有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(0,2)B.(-∞,-4)C.(4,+∞)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,直角梯形ABCD與等邊△ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=AD=2,F(xiàn)為線段EA上的點(diǎn),且EA=3EF.
(I)求證:EC∥平面FBD
(Ⅱ)求多面體EFBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)向量$\overrightarrow{a}$=(sinx,$\sqrt{3}$cosx),$\overrightarrow$=(-1,1),$\overrightarrow{c}$=(1,1),其中x∈(0,π].
(1)若($\overrightarrow{a}$+$\overrightarrow$)∥$\overrightarrow{c}$,求實(shí)數(shù)x的值;
(2)若$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,求函數(shù)sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.7個(gè)人排成一隊(duì)參觀某項(xiàng)目,其中ABC三人進(jìn)入展廳的次序必須是先B再A后C,則不同的列隊(duì)方式有多少種( 。
A.120B.240C.420D.840

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐P-ABC中,AC=BC=$\sqrt{2}$,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求二面角B-AP-C的正切值;
2)求點(diǎn)C到平面APB的距離.

查看答案和解析>>

同步練習(xí)冊答案