【題目】(2015·四川)如圖,橢圓E:的離心率是,過點(diǎn)P(0,1)的動(dòng)直線l與橢圓相交于A,B兩點(diǎn),當(dāng)直線l平行與x軸時(shí),直線l被橢圓E截得的線段長(zhǎng)為2.
(1)求橢圓E的方程;
(2)在平面直角坐標(biāo)系xOy中,是否存在與點(diǎn)P不同的定點(diǎn)Q,使得恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】
(1)
(2)
存在,Q點(diǎn)的坐標(biāo)為Q(0,2)
【解析】由已知,點(diǎn)(,1)在橢圓E上, 因此, 解得a=2, b=, 所以橢圓的方程為。 (2)當(dāng)直線l與x軸平行時(shí),設(shè)直線x與橢圓相交于C, D兩點(diǎn)如果存在定點(diǎn)Q滿足條件,則, 即所以Q點(diǎn)在y軸上,可設(shè)Q點(diǎn)的坐標(biāo)為(0,y0), 當(dāng)直線l與x軸垂直時(shí),設(shè)直線l與橢圓相交于M,N兩點(diǎn), 則M(0, ), N(0,-)。由, 有=, 解得y0=1或y0=2, 所以,若存在不同于點(diǎn)P的定點(diǎn)Q滿足條件,則Q點(diǎn)的坐標(biāo)只可能為Q(0,2), 下面證明:對(duì)任意的直線l均有,當(dāng)直線的斜率l不存在時(shí),由上可知,結(jié)論成立.
當(dāng)直線l的斜率存在時(shí),可設(shè)直線l的方程為y=kx+1的坐標(biāo)分別為(x1, y1),(x2, y2), 聯(lián)立, 得(2k2+1)x2+4kx-2=0. 其判別式△=16k2+8(2k2+1)>0, 所以x1+x2=-, x1·x2=-,因此+==2k, 易知,點(diǎn)B關(guān)于:一軸對(duì)稱的點(diǎn)的坐標(biāo)為B'(-x2, y2)
又KQA==k-, KQB==-k+=k-, 所以KQA= KQB , 即Q,A,B'三點(diǎn)共線, 所以=,故存在故存在與P不同的定點(diǎn)Q(0,2),使得恒成立。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)可以得到問題的答案,需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經(jīng)過點(diǎn)(﹣4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性
(2)若不等式 恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·新課標(biāo)I卷)已知函數(shù)f(x)=x3+ax+, g(x)=-lnx.
(1)當(dāng)a為何值時(shí),x軸為曲線y=f(x)的切線;
(2)用min{m,n} 表示m,n中的最小值,設(shè)函數(shù)h(x)=min{f(x),g(x)}(x>0),,討論h(x)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(1)請(qǐng)按字母F , G , H標(biāo)記在正方體相應(yīng)地頂點(diǎn)處(不需要說明理由)
(2)判斷平面BEG與平面ACH的位置關(guān)系.并說明你的結(jié)論.
(3)證明:直線DF⊥平面BEG
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)已知函數(shù)f(x)=2x , g(x)=x2+ax(其中aR).對(duì)于不相等的實(shí)數(shù)x1, x2 , 設(shè)m=,n=.
現(xiàn)有如下命題:
(1)對(duì)于任意不相等的實(shí)數(shù)x1, x2 , 都有m>0;
(2)對(duì)于任意的a及任意不相等的實(shí)數(shù)x1, x2 , ,都有n>0;
(3)對(duì)于任意的a , 存在不相等的實(shí)數(shù)x1, x2 , 使得m=n;
(4)對(duì)于任意的a , 存在不相等的實(shí)數(shù)x1, x2 , 使得m=-n.
其中的真命題有 (寫出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)隨機(jī)抽取一個(gè)年份,對(duì)西安市該年4月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 晴 | 雨 | 陰 | 陰 | 陰 | 雨 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 晴 | 陰 | 雨 | 陰 | 陰 | 晴 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 雨 |
(1)在4月份任取一天,估計(jì)西安市在該天不下雨的概率;
(2)西安市某學(xué)校擬從4月份的一個(gè)晴天開始舉行連續(xù)兩天的運(yùn)動(dòng)會(huì),估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,c的極坐標(biāo)方程為=2sin .
(1)寫出c的直角坐標(biāo)方程;
(2)P為直線l上一動(dòng)點(diǎn),當(dāng)P到圓心C的距離最小時(shí),求P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·湖南)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=1, a2=2,且an+1=3Sn-Sn+1+3(n)
(1)證明:an+2=3an;
(2)求Sn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),下列命題:①時(shí),為奇函數(shù);②的圖象關(guān)于中心對(duì)稱;③,時(shí),方程只有一個(gè)實(shí)根;④方程至多有兩個(gè)實(shí)根,其中正確的個(gè)數(shù)有
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com